論文の概要: ZScribbleSeg: Zen and the Art of Scribble Supervised Medical Image
Segmentation
- arxiv url: http://arxiv.org/abs/2301.04882v1
- Date: Thu, 12 Jan 2023 09:00:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 14:38:50.550044
- Title: ZScribbleSeg: Zen and the Art of Scribble Supervised Medical Image
Segmentation
- Title(参考訳): ZScribbleSeg:Zen and the Art of Scribble Supervised Medical Image Segmentation
- Authors: Ke Zhang, Xiahai Zhuang
- Abstract要約: 弱い教師付きセグメンテーションにのみスクリブルアノテーションを活用することを提案する。
既存のソリューションは主に注釈付き領域でのみ計算された選択的損失を利用する。
空間的関係と形状を事前にエンコードする正規化項を導入する。
我々は、ZScribbleSegと表記される統合フレームワークに、効率的なスクリブル監視を前者と統合する。
- 参考スコア(独自算出の注目度): 16.188681108101196
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Curating a large scale fully-annotated dataset can be both labour-intensive
and expertise-demanding, especially for medical images. To alleviate this
problem, we propose to utilize solely scribble annotations for weakly
supervised segmentation. Existing solutions mainly leverage selective losses
computed solely on annotated areas and generate pseudo gold standard
segmentation by propagating labels to adjacent areas. However, these methods
could suffer from the inaccurate and sometimes unrealistic pseudo segmentation
due to the insufficient supervision and incomplete shape features. Different
from previous efforts, we first investigate the principle of ''good scribble
annotations'', which leads to efficient scribble forms via supervision
maximization and randomness simulation. Furthermore, we introduce
regularization terms to encode the spatial relationship and shape prior, where
a new formulation is developed to estimate the mixture ratios of label classes.
These ratios are critical in identifying the unlabeled pixels for each class
and correcting erroneous predictions, thus the accurate estimation lays the
foundation for the incorporation of spatial prior. Finally, we integrate the
efficient scribble supervision with the prior into a unified framework, denoted
as ZScribbleSeg, and apply the method to multiple scenarios. Leveraging only
scribble annotations, ZScribbleSeg set new state-of-the-arts on four
segmentation tasks using ACDC, MSCMRseg, MyoPS and PPSS datasets.
- Abstract(参考訳): 大規模な完全アノテートデータセットの計算は、特に医療画像の場合、労働集約的かつ専門的要求の両方に当てはまる。
この問題を軽減するために,弱い教師付きセグメンテーションにのみスクリブルアノテーションを活用することを提案する。
既存のソリューションは主に注釈付き領域のみに計算された選択的損失を活用し、ラベルを隣接領域に伝播することで擬似金標準セグメンテーションを生成する。
しかし、これらの手法は、監督の不十分と不完全な形状特徴のため、不正確で時には非現実的な疑似セグメンテーションに苦しむ可能性がある。
先行研究と異なり,まず「良質なスクリブルアノテーション」の原理を考察し,監督の最大化とランダム性シミュレーションによる効率的なスクリブル形式を導出する。
さらに,空間的関係と形状を事前にエンコードする正規化項を導入し,ラベルの混合比を推定する新しい定式化法を開発した。
これらの比率は、各クラスのラベル付けされていないピクセルを識別し、誤った予測を補正するのに重要であるため、正確な推定は、空間的事前の取り込みの基礎となる。
最後に、ZScribbleSegと呼ばれる統合フレームワークに事前の効率的なスクリブル監視を統合し、その手法を複数のシナリオに適用する。
ZScribbleSegは、スクリブルアノテーションのみを活用することで、ACDC、MSCMRseg、MyoPS、PPSSデータセットを使用して、4つのセグメンテーションタスクに新たな最先端技術を設定する。
関連論文リスト
- Embarrassingly Simple Scribble Supervision for 3D Medical Segmentation [0.8391490466934672]
この課題の解決策として、スクリブル教師付き学習が登場し、大規模なデータセットを作成する際のアノテーションの労力の削減を約束する。
そこで本研究では,解剖学と病理学の多様さを網羅した7つのデータセットからなるベンチマークを提案する。
nnU-Netを用いた評価の結果,既存の手法の多くは一般化の欠如に悩まされているが,提案手法は一貫して最先端の性能を提供する。
論文 参考訳(メタデータ) (2024-03-19T15:41:16Z) - Scribble Hides Class: Promoting Scribble-Based Weakly-Supervised
Semantic Segmentation with Its Class Label [16.745019028033518]
画像レベルのクラスから情報を得たスクリブルアノテーションと擬似ラベルと、監督のためのグローバルセマンティクスの両方を利用するクラス駆動型スクリブルプロモーションネットワークを提案する。
スクリブルアノテーションの異なる性質を持つScribbleSupデータセットの実験は、従来の手法よりも優れており、本手法の優位性と堅牢性を示している。
論文 参考訳(メタデータ) (2024-02-27T14:51:56Z) - CPR++: Object Localization via Single Coarse Point Supervision [55.8671776333499]
粗い点修正(CPR)は、アルゴリズムの観点からの意味的分散を緩和する最初の試みである。
CPRは、アノテートされた最初のポイントを置き換えるために、近隣地域のセマンティックセンターポイントを選択することで意味のばらつきを減らす。
CPR++は、スケール情報を取得し、グローバル領域における意味的分散をさらに低減することができる。
論文 参考訳(メタデータ) (2024-01-30T17:38:48Z) - Latent Graph Representations for Critical View of Safety Assessment [2.9724186623561435]
CVS予測の手法として,まず乱れのあるシーングラフを用いて手術画像の表現を行い,その表現をグラフニューラルネットワークを用いて処理する手法を提案する。
我々のグラフ表現は、意味情報を明示的に符号化し、解剖学的推論を改善するとともに、視覚的特徴を識別可能性を維持し、意味的誤りに対する堅牢性を提供する。
本手法は,ボックスアノテーションのトレーニングにおいて,複数のベースラインメソッドよりも優れるだけでなく,セグメンテーションマスクのトレーニング時にも効果的にスケールし,最先端のパフォーマンスを維持していることを示す。
論文 参考訳(メタデータ) (2022-12-08T09:21:09Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
教師なしの人物再識別(ReID)は、アノテーションを使わずに人物検索のための識別的アイデンティティの特徴を学習することを目的としている。
近年の進歩はクラスタリングに基づく擬似ラベルを活用することで実現されている。
本稿では, Pseudo Label Refinement フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-30T09:39:57Z) - Label Cleaning Multiple Instance Learning: Refining Coarse Annotations
on Single Whole-Slide Images [83.7047542725469]
病理検体の全スライディング画像(WSI)における癌領域のアノテーションは、臨床診断、生医学研究、機械学習アルゴリズムの開発において重要な役割を担っている。
本稿では,外部トレーニングデータを必要とせず,単一のWSI上で粗いアノテーションを洗練するためのLC-MIL (Label Cleaning Multiple Instance Learning) を提案する。
乳癌リンパ節転移,肝癌,大腸癌の検体を併用した異種 WSI 実験の結果,LC-MIL は粗いアノテーションを著しく改善し,単一スライドから学習しながらも,最先端の代替品よりも優れていた。
論文 参考訳(メタデータ) (2021-09-22T15:06:06Z) - POPCORN: Progressive Pseudo-labeling with Consistency Regularization and
Neighboring [3.4253416336476246]
半教師付き学習(SSL)では、ラベルのないデータを使用して、画像の不足と、未確認領域へのメソッドの一般化の欠如を補う。
画像分割のための整合正則化と擬似ラベル化を組み合わせた新しい手法POPCORNを提案する。
論文 参考訳(メタデータ) (2021-09-13T23:36:36Z) - A Simple Baseline for Semi-supervised Semantic Segmentation with Strong
Data Augmentation [74.8791451327354]
セマンティックセグメンテーションのためのシンプルで効果的な半教師付き学習フレームワークを提案する。
単純な設計とトレーニングのテクニックのセットは、半教師付きセマンティックセグメンテーションの性能を大幅に向上させることができる。
本手法は,Cityscapes と Pascal VOC データセットの半教師付き設定において,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2021-04-15T06:01:39Z) - Spatially Varying Label Smoothing: Capturing Uncertainty from Expert
Annotations [19.700271444378618]
画像分割のタスクは、解剖学的構造間の境界の正確な位置に関する曖昧さのために本質的に騒々しい。
我々は、この情報は専門家のアノテーションから余分なコストで抽出することができ、ソフト確率予測と基礎となる不確実性の間の校正を改善することができると論じる。
そこで我々は,アウトプット予測の校正に有効であることを示す基底真理ラベルの'blurred'バージョン上でネットワークをトレーニングするラベル平滑化(ls)を構築した。
論文 参考訳(メタデータ) (2021-04-12T19:35:51Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z) - Self-Supervised Tuning for Few-Shot Segmentation [82.32143982269892]
Few-shotのセグメンテーションは、アノテートされたサンプルがほとんどない各画像ピクセルにカテゴリラベルを割り当てることを目的としている。
既存のメタラーニング手法では, 画像から抽出した視覚的特徴を埋め込み空間に埋め込むと, カテゴリー別識別記述子の生成に失敗する傾向にある。
本稿では,複数のエピソードにまたがる潜在特徴の分布を,自己分割方式に基づいて動的に調整する適応型フレームワークチューニングを提案する。
論文 参考訳(メタデータ) (2020-04-12T03:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。