論文の概要: Scribble Hides Class: Promoting Scribble-Based Weakly-Supervised
Semantic Segmentation with Its Class Label
- arxiv url: http://arxiv.org/abs/2402.17555v1
- Date: Tue, 27 Feb 2024 14:51:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 15:55:41.419403
- Title: Scribble Hides Class: Promoting Scribble-Based Weakly-Supervised
Semantic Segmentation with Its Class Label
- Title(参考訳): Scribble Hides Class: クラスラベルによるScribble-based Weakly Supervised Semantic Segmentationの促進
- Authors: Xinliang Zhang, Lei Zhu, Hangzhou He, Lujia Jin, Yanye Lu
- Abstract要約: 画像レベルのクラスから情報を得たスクリブルアノテーションと擬似ラベルと、監督のためのグローバルセマンティクスの両方を利用するクラス駆動型スクリブルプロモーションネットワークを提案する。
スクリブルアノテーションの異なる性質を持つScribbleSupデータセットの実験は、従来の手法よりも優れており、本手法の優位性と堅牢性を示している。
- 参考スコア(独自算出の注目度): 16.745019028033518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scribble-based weakly-supervised semantic segmentation using sparse scribble
supervision is gaining traction as it reduces annotation costs when compared to
fully annotated alternatives. Existing methods primarily generate pseudo-labels
by diffusing labeled pixels to unlabeled ones with local cues for supervision.
However, this diffusion process fails to exploit global semantics and
class-specific cues, which are important for semantic segmentation. In this
study, we propose a class-driven scribble promotion network, which utilizes
both scribble annotations and pseudo-labels informed by image-level classes and
global semantics for supervision. Directly adopting pseudo-labels might
misguide the segmentation model, thus we design a localization rectification
module to correct foreground representations in the feature space. To further
combine the advantages of both supervisions, we also introduce a distance
entropy loss for uncertainty reduction, which adapts per-pixel confidence
weights according to the reliable region determined by the scribble and
pseudo-label's boundary. Experiments on the ScribbleSup dataset with different
qualities of scribble annotations outperform all the previous methods,
demonstrating the superiority and robustness of our method.The code is
available at
https://github.com/Zxl19990529/Class-driven-Scribble-Promotion-Network.
- Abstract(参考訳): scribble-based weaklysupervised semantic segmentation using sparse scribble supervisionは、アノテーションのコストが完全にアノテートされた代替品に比べて削減されるため、勢いを増している。
既存の手法では、ラベル付きピクセルをラベルなしのピクセルに拡散して疑似ラベルを生成する。
しかし、この拡散過程は、セマンティクスのセグメンテーションにおいて重要なグローバルセマンティクスとクラス固有の手がかりを活用できない。
本研究では,クリブルアノテーションと擬似ラベルを,画像レベルクラスとグローバルセマンティクスの両方から情報を得たクラス駆動型クリブル促進ネットワークを提案する。
擬似ラベルの直接適用はセグメンテーションモデルを誤用する可能性があるため、特徴空間における前景表現を補正するための局所化修正モジュールを設計する。
両監督の利点を更に組み合わせるために,不確実性低減のための距離エントロピー損失を導入し,スクリブルと擬似ラベルの境界によって決定される信頼領域に応じて画素ごとの信頼度重みを適応させる。
ScribbleSupデータセットのさまざまな品質のスクリブルアノテーションによる実験は、従来のメソッドよりも優れており、我々のメソッドの優位性と堅牢性を示している。
関連論文リスト
- Scribbles for All: Benchmarking Scribble Supervised Segmentation Across Datasets [51.74296438621836]
Scribbles for Allは、スクリブルラベルに基づいて訓練されたセマンティックセグメンテーションのためのラベルおよびトレーニングデータ生成アルゴリズムである。
弱い監督の源泉としてのスクリブルの主な制限は、スクリブルセグメンテーションのための挑戦的なデータセットの欠如である。
Scribbles for Allは、いくつかの人気のあるセグメンテーションデータセットのスクリブルラベルを提供し、密集したアノテーションを持つデータセットのスクリブルラベルを自動的に生成するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2024-08-22T15:29:08Z) - Semi-supervised Semantic Segmentation Meets Masked Modeling:Fine-grained
Locality Learning Matters in Consistency Regularization [31.333862320143968]
半教師付きセマンティックセグメンテーションはラベル付き画像と豊富なラベル付き画像を利用してラベル効率の高い学習を実現することを目的としている。
我々は,より詳細な局所性学習により,より高密度なセグメンテーションを実現する,textttMaskMatchという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T03:28:53Z) - Class Enhancement Losses with Pseudo Labels for Zero-shot Semantic
Segmentation [40.09476732999614]
マスクの提案モデルは、ゼロショットセマンティックセグメンテーションの性能を大幅に改善した。
トレーニング中にバックグラウンドを埋め込むことは問題であり、結果として得られたモデルが過剰に学習し、正しいラベルではなく、すべての見えないクラスをバックグラウンドクラスとして割り当てる傾向がある。
本稿では,学習中の背景埋め込みの使用を回避し,テキスト埋め込みとマスク提案のセマンティックな関係を類似度スコアのランク付けにより活用する新しいクラス拡張損失を提案する。
論文 参考訳(メタデータ) (2023-01-18T06:55:02Z) - Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud [69.36717778451667]
大規模なポイントクラウドセマンティックセグメンテーションのための既存の方法は、高価な、退屈でエラーを起こしやすい手動のポイントワイドアノテーションを必要とする。
この問題を解決するために,2つのコンポーネントを含む効果的な弱教師付き手法を提案する。
実験結果から,既存の弱教師付き手法と完全教師付き手法を比較検討した。
論文 参考訳(メタデータ) (2022-12-09T09:42:26Z) - LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds [62.49198183539889]
我々は,LiDAR点雲を用いた屋外シーンのためのラベル効率のよいセマンティックセマンティックセマンティクスパイプラインを提案する。
本手法は,半弱教師付き学習を用いて,効率的なラベリング手法を設計する。
提案手法は,100%ラベル付き完全教師付き手法と比較して,さらに競争力が高い。
論文 参考訳(メタデータ) (2022-10-14T19:13:36Z) - Learning Semantic Correspondence with Sparse Annotations [66.37298464505261]
密接な意味的対応を見つけることは、コンピュータビジョンの基本的な問題である。
本研究では,高密度な擬似ラベルを生成するための教師学習パラダイムを提案する。
また、擬似ラベルを識別するための2つの新しい戦略も開発している。
論文 参考訳(メタデータ) (2022-08-15T02:24:18Z) - Universal Weakly Supervised Segmentation by Pixel-to-Segment Contrastive
Learning [28.498782661888775]
半教師付きメトリック学習問題として弱教師付きセグメンテーションを定式化する。
特徴空間における画素とセグメント間のコントラスト関係を4種類提案する。
我々はPascal VOCとDensePoseに大きな利益をもたらす、普遍的な弱教師付きセグメンタを提供する。
論文 参考訳(メタデータ) (2021-05-03T15:49:01Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
トレーニング中に見られないクラスをセグメント化できることは、ディープラーニングにおいて重要な技術的課題です。
事前のゼロラベルセマンティクスセグメンテーションは、ビジュアル・セマンティクスの埋め込みや生成モデルを学ぶことによってこのタスクにアプローチする。
本研究では,同一画像の異なる増分から生じる擬似ラベルの交点を取り出し,ノイズの多い擬似ラベルをフィルタリングする整合性正規化器を提案する。
論文 参考訳(メタデータ) (2021-04-21T14:34:33Z) - PCAMs: Weakly Supervised Semantic Segmentation Using Point Supervision [12.284208932393073]
本稿では,ある点レベルのアノテーションが与えられた画像から意味的セグメンテーションを生成する新しい手法を提案する。
提案するCNNは,通常,地上の真理ラベルの代わりに擬似ラベルを用いて完全に教師される。
提案手法は,PASCAL VOC 2012 データセットを引用した PASCAL VOC 2012 のセマンティックセマンティックセマンティフィケーションのための技術結果の状態を達成し,より強いバウンディングボックスやリスグル管理のための技術手法よりも優れていた。
論文 参考訳(メタデータ) (2020-07-10T21:25:27Z) - Weakly-Supervised Salient Object Detection via Scribble Annotations [54.40518383782725]
本稿では,スクリブルラベルからサリエンシを学習するための弱教師付きサリエント物体検出モデルを提案する。
そこで本研究では,予測されたサリエンシマップの構造アライメントを測定するために,新しい尺度であるサリエンシ構造尺度を提案する。
我々の手法は、既存の弱教師付き/非教師付き手法よりも優れているだけでなく、いくつかの完全教師付き最先端モデルと同等である。
論文 参考訳(メタデータ) (2020-03-17T12:59:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。