論文の概要: SynMotor: A Benchmark Suite for Object Attribute Regression and
Multi-task Learning
- arxiv url: http://arxiv.org/abs/2301.05027v1
- Date: Wed, 11 Jan 2023 18:27:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 14:37:20.059038
- Title: SynMotor: A Benchmark Suite for Object Attribute Regression and
Multi-task Learning
- Title(参考訳): SynMotor: オブジェクト属性回帰とマルチタスク学習のためのベンチマークスイート
- Authors: Chengzhi Wu, Linxi Qiu, Kanran Zhou, Julius Pfrommer and J\"urgen
Beyerer
- Abstract要約: このベンチマークは、2D/3D検出、分類、セグメンテーション、マルチ属性学習などのコンピュータビジョンタスクに使用できる。
モータのほとんどの特性は、バイナリではなく連続的な変数として定量化されているため、我々のベンチマークは、未検討の回帰タスクに適している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we develop a novel benchmark suite including both a 2D
synthetic image dataset and a 3D synthetic point cloud dataset. Our work is a
sub-task in the framework of a remanufacturing project, in which small electric
motors are used as fundamental objects. Apart from the given detection,
classification, and segmentation annotations, the key objects also have
multiple learnable attributes with ground truth provided. This benchmark can be
used for computer vision tasks including 2D/3D detection, classification,
segmentation, and multi-attribute learning. It is worth mentioning that most
attributes of the motors are quantified as continuously variable rather than
binary, which makes our benchmark well-suited for the less explored regression
tasks. In addition, appropriate evaluation metrics are adopted or developed for
each task and promising baseline results are provided. We hope this benchmark
can stimulate more research efforts on the sub-domain of object attribute
learning and multi-task learning in the future.
- Abstract(参考訳): 本稿では,2次元合成画像データセットと3次元合成点クラウドデータセットの両方を含む新しいベンチマークスイートを開発する。
私たちの仕事は、小さな電動モーターを基本オブジェクトとして使用する、再製造プロジェクトのフレームワークにおけるサブタスクです。
与えられた検出、分類、セグメンテーションアノテーションとは別に、キーオブジェクトは基底真理を持つ複数の学習可能な属性も備えている。
このベンチマークは、2D/3D検出、分類、セグメンテーション、マルチ属性学習などのコンピュータビジョンタスクに使用できる。
モーターのほとんどの属性は、バイナリではなく連続的な変数として定量化されているので、我々のベンチマークは、調査の少ない回帰タスクに適している。
さらに、各タスクに適切な評価指標を採用または開発し、有望なベースライン結果を提供する。
このベンチマークは、オブジェクト属性学習とマルチタスク学習のサブドメインに関するさらなる研究活動を促進することを願っている。
関連論文リスト
- Self-supervised cross-modality learning for uncertainty-aware object detection and recognition in applications which lack pre-labelled training data [6.892494758401737]
我々は、不確実性を認識したディープニューラルネットワークが2次元RGB画像中の物体を検出し、認識し、ローカライズするためにどのように訓練されるかを示す。
本手法は,ラベル付きデータセットが一般に利用できない,多くの重要な産業タスクに適用可能である。
論文 参考訳(メタデータ) (2024-11-05T13:26:31Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
ハイパースペクトル画像上で複数の分類タスクと回帰タスクを同時に行うマルチタスク深層学習モデルを提案する。
我々は、TAIGAと呼ばれる大規模なハイパースペクトルデータセットに対するアプローチを検証した。
結果の総合的定性的および定量的分析により,提案手法が他の最先端手法よりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2024-07-23T11:14:54Z) - LiDAR-BEVMTN: Real-Time LiDAR Bird's-Eye View Multi-Task Perception Network for Autonomous Driving [12.713417063678335]
本稿では,LiDARに基づくオブジェクト検出,意味論,動作セグメンテーションのためのリアルタイムマルチタスク畳み込みニューラルネットワークを提案する。
オブジェクト検出を選択的に改善するためのセマンティック・ウェイト・アンド・ガイダンス(SWAG)モジュールを提案する。
我々は,2つのタスク,セマンティックとモーションセグメンテーション,および3Dオブジェクト検出のための最先端性能に近い2つのタスクに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2023-07-17T21:22:17Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
本稿では,物理に基づくメタバース合成による視覚駆動型ロボットグルーピングのための大規模ベンチマークデータセットを提案する。
提案するデータセットには,10万の画像と25種類のオブジェクトが含まれている。
また,オブジェクト検出とセグメンテーション性能を評価するためのデータセットとともに,新しいレイアウト重み付け性能指標を提案する。
論文 参考訳(メタデータ) (2021-12-29T17:23:24Z) - The Devil is in the Task: Exploiting Reciprocal Appearance-Localization
Features for Monocular 3D Object Detection [62.1185839286255]
低コストのモノクル3D物体検出は、自律運転において基本的な役割を果たす。
DFR-Netという動的特徴反射ネットワークを導入する。
我々は、KITTIテストセットの全ての単分子3D物体検出器の中で、第1位にランク付けする。
論文 参考訳(メタデータ) (2021-12-28T07:31:18Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
オブジェクトインスタンスの大規模なコレクションの複数のビューからモデルを学ぶことに重点を置いています。
再構成を大幅に改善するワープコンディショニングレイ埋め込み(WCR)と呼ばれる新しいニューラルネットワーク設計を提案する。
本評価は,既存のベンチマークを用いた複数の深部単眼再構成ベースラインに対する性能改善を示す。
論文 参考訳(メタデータ) (2021-03-30T17:57:01Z) - Multi-Task Multi-Sensor Fusion for 3D Object Detection [93.68864606959251]
本稿では,2次元および3次元物体検出と地盤推定と奥行き完了を理由とするエンドツーエンド学習可能なアーキテクチャを提案する。
実験の結果,これらのタスクは相補的であり,様々なレベルで情報を融合することで,ネットワークがよりよい表現を学ぶのに役立つことがわかった。
論文 参考訳(メタデータ) (2020-12-22T22:49:15Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
ポイントクラウドセマンティックセグメンテーションは、自動運転において重要な役割を果たす。
現在の3Dセマンティックセグメンテーションネットワークは、よく表現されたクラスに対して優れた性能を発揮する畳み込みアーキテクチャに焦点を当てている。
Aware 3D Semantic Detection (DASS) フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-22T14:17:40Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) は、あるトピックやクレームに対する著者の姿勢を検出することを目的としている。
マルチデータセット学習環境において、さまざまなドメインの10のStDデータセットから学習するStDベンチマークを導入する。
このベンチマーク設定では、5つのデータセットに新しい最先端結果を表示することができます。
論文 参考訳(メタデータ) (2020-01-06T13:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。