論文の概要: Low Dimensional State Representation Learning with Reward-shaped Priors
- arxiv url: http://arxiv.org/abs/2007.16044v2
- Date: Thu, 7 Jan 2021 16:48:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-05 19:34:03.404039
- Title: Low Dimensional State Representation Learning with Reward-shaped Priors
- Title(参考訳): 報酬型事前学習による低次元状態表現学習
- Authors: Nicol\`o Botteghi, Ruben Obbink, Daan Geijs, Mannes Poel, Beril
Sirmacek, Christoph Brune, Abeje Mersha and Stefano Stramigioli
- Abstract要約: 本研究では,観測結果から低次元状態空間への写像の学習を目的とした手法を提案する。
このマッピングは、環境とタスクの事前知識を組み込むために形作られた損失関数を用いて教師なしの学習で学習される。
本手法は,シミュレーション環境における移動ロボットナビゲーションタスクおよび実ロボット上でのテストを行う。
- 参考スコア(独自算出の注目度): 7.211095654886105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning has been able to solve many complicated robotics tasks
without any need for feature engineering in an end-to-end fashion. However,
learning the optimal policy directly from the sensory inputs, i.e the
observations, often requires processing and storage of a huge amount of data.
In the context of robotics, the cost of data from real robotics hardware is
usually very high, thus solutions that achieve high sample-efficiency are
needed. We propose a method that aims at learning a mapping from the
observations into a lower-dimensional state space. This mapping is learned with
unsupervised learning using loss functions shaped to incorporate prior
knowledge of the environment and the task. Using the samples from the state
space, the optimal policy is quickly and efficiently learned. We test the
method on several mobile robot navigation tasks in a simulation environment and
also on a real robot.
- Abstract(参考訳): 強化学習は、機能工学をエンドツーエンドで必要とせずに、多くの複雑なロボティクスタスクを解決できる。
しかし、知覚入力、すなわち観察から直接最適なポリシーを学ぶには、膨大な量のデータの処理と保存が必要となる。
ロボット工学の文脈では、実際のロボティクスハードウェアからのデータのコストは通常非常に高く、高いサンプル効率を実現するソリューションが必要である。
観測結果から低次元状態空間への写像の学習を目的とした手法を提案する。
このマッピングは、環境とタスクの事前知識を組み込んだ損失関数を用いて教師なし学習によって学習される。
状態空間からのサンプルを用いて、最適なポリシーを迅速かつ効率的に学習する。
本手法は,シミュレーション環境における移動ロボットナビゲーションタスクおよび実ロボット上でのテストを行う。
関連論文リスト
- Simulation-Aided Policy Tuning for Black-Box Robot Learning [47.83474891747279]
本稿では,データ効率の向上に着目した新しいブラックボックスポリシー探索アルゴリズムを提案する。
このアルゴリズムはロボット上で直接学習し、シミュレーションを追加の情報源として扱い、学習プロセスを高速化する。
ロボットマニピュレータ上でのタスク学習の高速化と成功を,不完全なシミュレータの助けを借りて示す。
論文 参考訳(メタデータ) (2024-11-21T15:52:23Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial
Application Case on Autonomous Disassembly [55.41644538483948]
我々は,点クラウドデータにsim2realTransfer Learningを用いた産業アプリケーションケースを提案する。
合成ポイントクラウドデータの生成と処理方法に関する洞察を提供する。
この問題に対処するために、パッチベースの新しいアテンションネットワークも提案されている。
論文 参考訳(メタデータ) (2023-01-12T14:00:37Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
我々は、ロボット操作ポリシーのタスク非依存報酬関数を学習するために、幅広い操作タスクを解く人間のラベル付きビデオを使用する。
学習された報酬は、タイムコントラストの目的を用いて学習した埋め込み空間におけるゴールまでの距離に基づいている。
論文 参考訳(メタデータ) (2022-11-16T16:26:48Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
本稿では,スパース・リワード型ロボット操作作業における効率的な学習を可能にするモデルに基づく能動探索手法を提案する。
我々は,提案アルゴリズムをシミュレーションおよび実ロボットで評価し,スクラッチから本手法を訓練した。
論文 参考訳(メタデータ) (2022-10-23T18:07:51Z) - Memory-based gaze prediction in deep imitation learning for robot
manipulation [2.857551605623957]
提案アルゴリズムは、逐次データに基づく視線推定にTransformerベースの自己アテンションアーキテクチャを用いてメモリを実装している。
提案手法は,従来の状態の記憶を必要とする実ロボット多目的操作タスクを用いて評価した。
論文 参考訳(メタデータ) (2022-02-10T07:30:08Z) - Low Dimensional State Representation Learning with Robotics Priors in
Continuous Action Spaces [8.692025477306212]
強化学習アルゴリズムは、エンドツーエンドで複雑なロボティクスタスクを解くことができることが証明されている。
本稿では,ロボットの生の知覚情報から得られる高次元の観察から,低次元状態表現の学習と最適ポリシーの学習を組み合わせた枠組みを提案する。
論文 参考訳(メタデータ) (2021-07-04T15:42:01Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
単一のロボットアームがピクセルからスパースリワード操作ポリシーを学習できることを示します。
デモは10回しかなく、単一のロボットアームがピクセルからスパースリワード操作のポリシーを学習できることを示しています。
論文 参考訳(メタデータ) (2020-12-14T22:18:39Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
本稿では,事前学習されたロボット知覚モデルの最終的な目的と協調して設計された感覚データのタスク関連表現を学習するアルゴリズムを提案する。
本アルゴリズムは,ロボットの知覚データを競合する手法の最大11倍まで積極的に圧縮する。
論文 参考訳(メタデータ) (2020-11-06T07:39:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。