Quadrature-PT symmetry: Classical-to-quantum transition in noise fluctuations
- URL: http://arxiv.org/abs/2301.05511v2
- Date: Fri, 24 May 2024 14:52:02 GMT
- Title: Quadrature-PT symmetry: Classical-to-quantum transition in noise fluctuations
- Authors: Wencong Wang, Yanhua Zhai, Dongmei Liu, Xiaoshun Jiang, Saeid Vashahri Ghamsari, Jianming Wen,
- Abstract summary: We present evidence that a non-Hermitian (NH) twin-beam system, undergoing phase-sensitive amplification (PSA) and balanced loss, exhibits distinctive features absent in classical NH or Hermitian quantum scenarios.
Our proposed bipartite open system promises optimal sensing, showcasing an improved signal-to-noise ratio and sensitivity, constrained by quantum Cram'er-Rao bound or Fisher information.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While gain-loss-coupled photonic platforms have achieved significant success in studying classical parity-time (PT) symmetry, they encounter challenges in demonstrating pure quantum effects due to incompatible operator transformations and Langevin noise. Here, we present compelling evidence that a non-Hermitian (NH) twin-beam system, undergoing phase-sensitive amplification (PSA) and balanced loss, not only enables observing the usual eigenvalue-associated PT phase transition but also exhibits distinctive features absent in classical NH or Hermitian quantum scenarios, encompassing quadrature PT symmetry, anomalous loss-induced quadrature squeezing, and dynamical and stationary classical-to-quantum transitions in noise fluctuations. Furthermore, our proposed bipartite open system promises optimal sensing, showcasing an improved signal-to-noise ratio and sensitivity, constrained by quantum Cram\'{e}r-Rao bound or Fisher information. These findings deepen the comprehension of authentic quantum optical PT symmetry involving both gain and loss, addressing contentious issues and illuminating new facets of the subject.
Related papers
- Noise resilience in adaptive and symmetric monitored quantum circuits [0.0]
We study the fate of the symmetry-protected absorbing state and charge-sharpening transitions in the presence of symmetry-breaking noise.
We find that the net effect of noise results in coherent and incoherent symmetry-breaking effects.
Despite the unavoidable noise in current quantum hardwares, our findings offer an optimistic outlook for observing symmetry-protected phases.
arXiv Detail & Related papers (2024-10-18T18:00:33Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Dual opposing quadrature-PT symmetry [3.9911464307919124]
Recent research on type-I quadrature parity-time (PT) symmetry, utilizing an open twin-beam system.
Investigation into the correlation with the Einstein-Podolsky-Rosen criteria uncovers previously unexplored connections between PT symmetry and nonclassicality.
arXiv Detail & Related papers (2024-05-24T14:57:31Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Symmetry-induced many-body quantum interference in chaotic bosonic
systems: an augmented Truncated Wigner method [0.0]
The Truncated Wigner Approximation (TWA) does not account for genuine many-body quantum interference between different solutions of the mean-field equations of a bosonic many-body (MB) system.
Here we show how one can conceive an augmented version of the TWA which can account for this particular effect.
arXiv Detail & Related papers (2022-02-09T17:46:49Z) - Coherent Many-Body Oscillations Induced by a Superposition of Broken
Symmetry States in the Wake of a Quantum Phase Transition [0.0]
quenches through the critical region of quantum phase transitions result in post-transition states populated with topological defects.
We identify coherent quantum oscillations induced by such superpositions in observables complementary to the one involved in symmetry breaking.
In addition to the obvious fundamental significance of a superposition of different broken symmetry states, quantum coherent oscillations can be used to verify unitarity and test for imperfections of the experimental implementations of quantum simulators.
arXiv Detail & Related papers (2022-01-29T09:44:01Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Exponentially-enhanced quantum sensing with non-Hermitian lattice
dynamics [77.34726150561087]
We show that certain asymmetric non-Hermitian tight-binding models with a $mathbbZ$ symmetry yield a pronounced sensing advantage.
Our setup is directly compatible with a variety of quantum optical and superconducting circuit platforms.
arXiv Detail & Related papers (2020-04-01T17:14:14Z) - Quantum emulation of coherent backscattering in a system of
superconducting qubits [45.82374977939355]
We use multi-pass Landau-Zener transitions at the avoided crossing of a highly-coherent superconducting qubit to emulate weak localization (WL) and universal conductance fluctuations (UCF)
The higher coherence of this qubit enabled the realization of both effects, in contrast to earlier work arXiv:1204.6428, which successfully emulated UCF, but did not observe WL.
arXiv Detail & Related papers (2019-12-28T17:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.