DINF: Dynamic Instance Noise Filter for Occluded Pedestrian Detection
- URL: http://arxiv.org/abs/2301.05565v1
- Date: Fri, 13 Jan 2023 14:12:36 GMT
- Title: DINF: Dynamic Instance Noise Filter for Occluded Pedestrian Detection
- Authors: Li Xiang, He Miao, Luo Haibo, Xiao Jiajie
- Abstract summary: RCNN-based pedestrian detectors use rectangle regions to extract instance features.
The number of severely overlapping objects and the number of slightly overlapping objects are unbalanced.
An iterable dynamic instance noise filter (DINF) is proposed for the RCNN-based pedestrian detectors to improve the signal-noise ratio of the instance feature.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Occlusion issue is the biggest challenge in pedestrian detection. RCNN-based
detectors extract instance features by cropping rectangle regions of interest
in the feature maps. However, the visible pixels of the occluded objects are
limited, making the rectangle instance feature mixed with a lot of
instance-irrelevant noise information. Besides, by counting the number of
instances with different degrees of overlap of CrowdHuman dataset, we find that
the number of severely overlapping objects and the number of slightly
overlapping objects are unbalanced, which may exacerbate the challenges posed
by occlusion issues. Regarding to the noise issue, from the perspective of
denoising, an iterable dynamic instance noise filter (DINF) is proposed for the
RCNN-based pedestrian detectors to improve the signal-noise ratio of the
instance feature. Simulating the wavelet denoising process, we use the instance
feature vector to generate dynamic convolutional kernels to transform the RoIs
features to a domain in which the near-zero values represent the noise
information. Then, soft thresholding with channel-wise adaptive thresholds is
applied to convert the near-zero values to zero to filter out noise
information. For the imbalance issue, we propose an IoU-Focal factor (IFF) to
modulate the contributions of the well-regressed boxes and the bad-regressed
boxes to the loss in the training process, paying more attention to the
minority severely overlapping objects. Extensive experiments conducted on
CrowdHuman and CityPersons demonstrate that our methods can help RCNN-based
pedestrian detectors achieve state-of-the-art performance.
Related papers
- DenoDet: Attention as Deformable Multi-Subspace Feature Denoising for Target Detection in SAR Images [20.11145540094807]
We propose a network aided by explicit frequency domain transform to calibrate convolutional biases and pay more attention to high-frequencies.
We design TransDeno, a dynamic frequency domain attention module that performs as a transform domain soft thresholding operation.
Our plug-and-play TransDeno sets state-of-the-art scores on multiple SAR target detection datasets.
arXiv Detail & Related papers (2024-06-05T01:05:26Z) - Robust Tiny Object Detection in Aerial Images amidst Label Noise [50.257696872021164]
This study addresses the issue of tiny object detection under noisy label supervision.
We propose a DeNoising Tiny Object Detector (DN-TOD), which incorporates a Class-aware Label Correction scheme.
Our method can be seamlessly integrated into both one-stage and two-stage object detection pipelines.
arXiv Detail & Related papers (2024-01-16T02:14:33Z) - DeNoising-MOT: Towards Multiple Object Tracking with Severe Occlusions [52.63323657077447]
We propose DNMOT, an end-to-end trainable DeNoising Transformer for multiple object tracking.
Specifically, we augment the trajectory with noises during training and make our model learn the denoising process in an encoder-decoder architecture.
We conduct extensive experiments on the MOT17, MOT20, and DanceTrack datasets, and the experimental results show that our method outperforms previous state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2023-09-09T04:40:01Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Degradation-Noise-Aware Deep Unfolding Transformer for Hyperspectral
Image Denoising [9.119226249676501]
Hyperspectral images (HSIs) are often quite noisy because of narrow band spectral filtering.
To reduce the noise in HSI data cubes, both model-driven and learning-based denoising algorithms have been proposed.
This paper proposes a Degradation-Noise-Aware Unfolding Network (DNA-Net) that addresses these issues.
arXiv Detail & Related papers (2023-05-06T13:28:20Z) - CFNet: Conditional Filter Learning with Dynamic Noise Estimation for
Real Image Denoising [37.29552796977652]
This paper considers real noise approximated by heteroscedastic Gaussian/Poisson Gaussian distributions with in-camera signal processing pipelines.
We propose a novel conditional filter in which the optimal kernels for different feature positions can be adaptively inferred by local features from the image and the noise map.
Also, we bring the thought that alternatively performs noise estimation and non-blind denoising into CNN structure, which continuously updates noise prior to guide the iterative feature denoising.
arXiv Detail & Related papers (2022-11-26T14:28:54Z) - Robust Semantic Communications with Masked VQ-VAE Enabled Codebook [56.63571713657059]
We propose a framework for the robust end-to-end semantic communication systems to combat the semantic noise.
To combat the semantic noise, the adversarial training with weight is developed to incorporate the samples with semantic noise in the training dataset.
We develop a feature importance module (FIM) to suppress the noise-related and task-unrelated features.
arXiv Detail & Related papers (2022-06-08T16:58:47Z) - CVF-SID: Cyclic multi-Variate Function for Self-Supervised Image
Denoising by Disentangling Noise from Image [53.76319163746699]
We propose a novel and powerful self-supervised denoising method called CVF-SID.
CVF-SID can disentangle a clean image and noise maps from the input by leveraging various self-supervised loss terms.
It achieves state-of-the-art self-supervised image denoising performance and is comparable to other existing approaches.
arXiv Detail & Related papers (2022-03-24T11:59:28Z) - Robust Unsupervised Multi-Object Tracking in Noisy Environments [5.409476600348953]
We introduce a robust unsupervised multi-object tracking (MOT) model: AttU-Net.
The proposed single-head attention model helps limit the negative impact of noise by learning visual representations at different segment scales.
We evaluate our method in the MNIST and the Atari game video benchmark.
arXiv Detail & Related papers (2021-05-20T19:38:03Z) - SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing [131.04304632759033]
Small and cluttered objects are common in real-world which are challenging for detection.
In this paper, we first innovatively introduce the idea of denoising to object detection.
Instance-level denoising on the feature map is performed to enhance the detection to small and cluttered objects.
arXiv Detail & Related papers (2020-04-28T06:03:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.