Mixed-state topological order and the errorfield double formulation of
decoherence-induced transitions
- URL: http://arxiv.org/abs/2301.05687v1
- Date: Fri, 13 Jan 2023 18:15:04 GMT
- Title: Mixed-state topological order and the errorfield double formulation of
decoherence-induced transitions
- Authors: Yimu Bao, Ruihua Fan, Ashvin Vishwanath, Ehud Altman
- Abstract summary: We develop an effective field theory characterizing the impact of decoherence on states with abelian topological order.
Our framework generalizes the error recovery transitions, previously derived for certain stabilizer codes, to generic topologically ordered states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop an effective field theory characterizing the impact of decoherence
on states with abelian topological order and on their capacity to protect
quantum information. The decoherence appears as a temporal defect in the double
topological quantum field theory that describes the pure density matrix of the
uncorrupted state, and it drives a boundary phase transition involving anyon
condensation at a critical coupling strength. The ensuing decoherence-induced
phases and the loss of quantum information are classified by the Lagrangian
subgroups of the double topological order. Our framework generalizes the error
recovery transitions, previously derived for certain stabilizer codes, to
generic topologically ordered states and shows that they stem from phase
transitions in the intrinsic topological order characterizing the mixed state.
Related papers
- Replica topological order in quantum mixed states and quantum error
correction [0.0]
Topological phases of matter offer a promising platform for quantum computation and quantum error correction.
We give two definitions for replica topological order in mixed states, which involve $n$ copies of density matrices of the mixed state.
We show that in the quantum-topological phase, there exists a postselection-based error correction protocol that recovers the quantum information, while in the classical-topological phase, the quantum information has decohere and cannot be fully recovered.
arXiv Detail & Related papers (2024-02-14T19:00:03Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Softening of Majorana edge states by long-range couplings [77.34726150561087]
Long-range couplings in the Kitaev chain is shown to modify the universal scaling of topological states close to the critical point.
We prove that the Majorana states become increasingly delocalised at a universal rate which is only determined by the interaction range.
arXiv Detail & Related papers (2023-01-29T19:00:08Z) - Topological squashed entanglement: nonlocal order parameter for
one-dimensional topological superconductors [0.0]
We show the end-to-end, long-distance, bipartite squashed entanglement between the edges of a many-body system.
For the Kitaev chain in the entire topological phase, the edge squashed entanglement is quantized to log(2)/2, half the maximal Bell-state entanglement, and vanishes in the trivial phase.
Such topological squashed entanglement exhibits the correct scaling at the quantum phase transition, is stable in the presence of interactions, and is robust against disorder and local perturbations.
arXiv Detail & Related papers (2022-01-28T10:57:51Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Phase transitions in the frustrated Ising ladder with stoquastic and
nonstoquastic catalysts [0.0]
We study how a first-order phase transition with a topological origin is affected by interactions of the $pm XX$-type.
This is the first study of the effects of nonstoquasticity on a first-order phase transition between topologically distinct phases.
arXiv Detail & Related papers (2020-12-13T20:36:34Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Topological Phase Transitions Induced by Varying Topology and Boundaries
in the Toric Code [0.0]
We study the sensitivity of such phases of matter to the underlying topology.
We claim that these phase transitions are accompanied by broken symmetries in the excitation space.
We show that the phase transition between such steady states is effectively captured by the expectation value of the open-loop operator.
arXiv Detail & Related papers (2020-04-07T18:00:06Z) - Quantum phase transition of fracton topological orders [0.0]
Fracton topological order (FTO) is a new classification of correlated phases in three spatial dimensions.
FTO is immune to local perturbations, whereas a strong enough global external perturbation is expected to break the order.
We develop a theory to study analytically the critical point of the transition.
arXiv Detail & Related papers (2020-01-16T16:57:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.