Coherent information as a mixed-state topological order parameter of fermions
- URL: http://arxiv.org/abs/2412.12279v1
- Date: Mon, 16 Dec 2024 19:00:20 GMT
- Title: Coherent information as a mixed-state topological order parameter of fermions
- Authors: Ze-Min Huang, Luis Colmenarez, Markus Müller, Sebastian Diehl,
- Abstract summary: A quantum memory in the error correctable phase is captured by the presence of a Majorana zero mode.
Our work hints at a broader connection of the robustness of quantum information in stabilizer codes and mixed-state topological phase transitions in symmetry protected fermion matter.
- Score: 1.351813974961217
- License:
- Abstract: Quantum error correction protects quantum information against decoherence provided the noise strength remains below a critical threshold. This threshold marks the critical point for the decoding phase transition. Here we connect this transition in the toric code to a topological phase transition in disordered Majorana fermions at high temperatures. A quantum memory in the error correctable phase is captured by the presence of a Majorana zero mode, trapped in vortex defects associated with twisted boundary conditions. These results are established by expressing the coherent information, which measures the amount of recoverable quantum information in a given noisy code, in terms of a mixed-state topological order parameter of fermions. Our work hints at a broader connection of the robustness of quantum information in stabilizer codes and mixed-state topological phase transitions in symmetry protected fermion matter.
Related papers
- Mixed-State Topological Order under Coherent Noises [2.8391355909797644]
We find remarkable stability of mixed-state topological order under random rotation noise with axes near the $Y$-axis of qubits.
The upper bounds for the intrinsic error threshold are determined by these phase boundaries, beyond which quantum error correction becomes impossible.
arXiv Detail & Related papers (2024-11-05T19:00:06Z) - Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - The Stability of Gapped Quantum Matter and Error-Correction with
Adiabatic Noise [0.0]
We argue that a quantum code can recover from adiabatic noise channels, corresponding to random adiabatic drift of code states through the phase.
We show examples in which quantum information can be recovered by using stabilizer measurements and Pauli feedback, even up to a phase boundary.
arXiv Detail & Related papers (2024-02-22T19:00:00Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Softening of Majorana edge states by long-range couplings [77.34726150561087]
Long-range couplings in the Kitaev chain is shown to modify the universal scaling of topological states close to the critical point.
We prove that the Majorana states become increasingly delocalised at a universal rate which is only determined by the interaction range.
arXiv Detail & Related papers (2023-01-29T19:00:08Z) - Mixed-state topological order and the errorfield double formulation of
decoherence-induced transitions [0.0]
We develop an effective field theory characterizing the impact of decoherence on states with abelian topological order.
Our framework generalizes the error recovery transitions, previously derived for certain stabilizer codes, to generic topologically ordered states.
arXiv Detail & Related papers (2023-01-13T18:15:04Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Shannon theory for quantum systems and beyond: information compression
for fermions [68.8204255655161]
We show that entanglement fidelity in the fermionic case is capable of evaluating the preservation of correlations.
We introduce a fermionic version of the source coding theorem showing that, as in the quantum case, the von Neumann entropy is the minimal rate for which a fermionic compression scheme exists.
arXiv Detail & Related papers (2021-06-09T10:19:18Z) - Realising the Symmetry-Protected Haldane Phase in Fermi-Hubbard Ladders [0.0]
Topology in quantum many-body systems has profoundly changed our understanding of quantum phases of matter.
Here, we realise such a topological Haldane phase with Fermi-Hubbard ladders in an ultracold-atom quantum simulator.
arXiv Detail & Related papers (2021-03-18T17:55:56Z) - Measurement-Induced Entanglement Transitions in the Quantum Ising Chain:
From Infinite to Zero Clicks [0.0]
We investigate measurement-induced phase transitions in the Quantum Ising chain coupled to a monitoring environment.
We find a remarkably similar phenomenology as the measurement strength $gamma$ is increased.
We interpret the central charge mismatch near the transition in terms of noise-induced disentanglement.
arXiv Detail & Related papers (2021-03-16T15:30:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.