論文の概要: Who Should I Trust: AI or Myself? Leveraging Human and AI Correctness
Likelihood to Promote Appropriate Trust in AI-Assisted Decision-Making
- arxiv url: http://arxiv.org/abs/2301.05809v1
- Date: Sat, 14 Jan 2023 02:51:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 18:41:55.437664
- Title: Who Should I Trust: AI or Myself? Leveraging Human and AI Correctness
Likelihood to Promote Appropriate Trust in AI-Assisted Decision-Making
- Title(参考訳): 誰が信頼すべきか - AIか、自分自身か?
AIによる意思決定における適切な信頼を促進するために人間とAIの正しさを活用する
- Authors: Shuai Ma, Ying Lei, Xinru Wang, Chengbo Zheng, Chuhan Shi, Ming Yin,
Xiaojuan Ma
- Abstract要約: AIによる意思決定では、人間の意思決定者がいつAIを信頼するか、いつ自分自身を信頼するかを知ることが重要である。
我々は、意思決定モデルを近似し、同様の事例で潜在的なパフォーマンスを計算することで、人間のCLをモデル化した。
我々は,AIによる意思決定プロセスにおいて,ユーザの信頼を明確かつシンプルに調整するための3つのCL活用戦略を提案した。
- 参考スコア(独自算出の注目度): 36.50604819969994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In AI-assisted decision-making, it is critical for human decision-makers to
know when to trust AI and when to trust themselves. However, prior studies
calibrated human trust only based on AI confidence indicating AI's correctness
likelihood (CL) but ignored humans' CL, hindering optimal team decision-making.
To mitigate this gap, we proposed to promote humans' appropriate trust based on
the CL of both sides at a task-instance level. We first modeled humans' CL by
approximating their decision-making models and computing their potential
performance in similar instances. We demonstrated the feasibility and
effectiveness of our model via two preliminary studies. Then, we proposed three
CL exploitation strategies to calibrate users' trust explicitly/implicitly in
the AI-assisted decision-making process. Results from a between-subjects
experiment (N=293) showed that our CL exploitation strategies promoted more
appropriate human trust in AI, compared with only using AI confidence. We
further provided practical implications for more human-compatible AI-assisted
decision-making.
- Abstract(参考訳): AIによる意思決定では、人間の意思決定者がいつAIを信頼するか、いつ自分自身を信頼するかを知ることが重要である。
しかし、以前の研究では、AIの正当性(CL)を示すAIの信頼性のみに基づいて、人間の信頼を校正した。
このギャップを緩和するために,タスク・インスタンスレベルで両面のCLに基づいて,人間の適切な信頼を促進することを提案した。
まず、意思決定モデルを近似し、同様の事例で潜在的な性能を計算し、人間のCLをモデル化した。
2つの予備研究により,本モデルの有効性と有効性を示した。
そこで我々は,AIによる意思決定プロセスにおいて,ユーザの信頼を明確かつシンプルに調整するための3つのCL活用戦略を提案した。
対象間の実験(N=293)の結果、私たちのCL活用戦略はAIの信頼性のみを使用するよりも、AIに対する適切な人間信頼を促進した。
我々はさらに、より人間互換のAI支援意思決定に実践的な意味を提供した。
関連論文リスト
- Overconfident and Unconfident AI Hinder Human-AI Collaboration [5.480154202794587]
本研究は,AIに対するユーザの信頼度,AIアドバイスの採用,コラボレーション結果に及ぼすAI信頼度の影響について検討する。
信頼度調整支援の欠如は、未調整の信頼度の検出を困難にすることでこの問題を悪化させる。
我々の研究は、人間とAIのコラボレーションを強化するためのAI信頼度校正の重要性を強調した。
論文 参考訳(メタデータ) (2024-02-12T13:16:30Z) - A Diachronic Perspective on User Trust in AI under Uncertainty [52.44939679369428]
現代のNLPシステムは、しばしば未分類であり、ユーザの信頼を損なう確実な誤った予測をもたらす。
賭けゲームを用いて,信頼を損なう事象に対するユーザの信頼の進化について検討する。
論文 参考訳(メタデータ) (2023-10-20T14:41:46Z) - Training Towards Critical Use: Learning to Situate AI Predictions
Relative to Human Knowledge [22.21959942886099]
我々は、人間がAIモデルでは利用できない知識に対してAI予測をシチュレートする能力を集中させる「クリティカルユース」と呼ばれるプロセス指向の適切な依存の概念を紹介します。
我々は、児童虐待スクリーニングという複雑な社会的意思決定環境でランダム化オンライン実験を行う。
参加者にAIによる意思決定を実践する、迅速で低い機会を提供することによって、初心者は、経験豊富な労働者に類似したAIとの不一致のパターンを示すようになった。
論文 参考訳(メタデータ) (2023-08-30T01:54:31Z) - Best-Response Bayesian Reinforcement Learning with Bayes-adaptive POMDPs
for Centaurs [22.52332536886295]
本稿では,人間とAIの相互作用を逐次ゲームとして新たに定式化する。
このケースでは、有界人間によるより良い意思決定を支援するというAIの問題は、ベイズ対応のPOMDPに還元される。
我々は、機械が自身の限界と人間の助けを借りて改善する方法について議論する。
論文 参考訳(メタデータ) (2022-04-03T21:00:51Z) - The Response Shift Paradigm to Quantify Human Trust in AI
Recommendations [6.652641137999891]
説明可能性、解釈可能性、そしてそれらがAIシステムに対する人間の信頼にどれほど影響するかは、究極的には機械学習と同じくらいの人間の認知の問題である。
我々は,AIレコメンデーションが人的決定に与える影響を定量化する汎用のヒューマン・AIインタラクション・パラダイムを開発し,検証した。
我々の実証・実証パラダイムは、急速に成長するXAI/IAIアプローチをエンドユーザーへの影響の観点から定量的に比較することができる。
論文 参考訳(メタデータ) (2022-02-16T22:02:09Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and
Goals of Human Trust in AI [55.4046755826066]
我々は、社会学の対人信頼(すなわち、人間の信頼)に着想を得た信頼のモデルについて議論する。
ユーザとAIの間の信頼は、暗黙的あるいは明示的な契約が保持する信頼である。
我々は、信頼できるAIの設計方法、信頼が浮かび上がったかどうか、保証されているかどうかを評価する方法について論じる。
論文 参考訳(メタデータ) (2020-10-15T03:07:23Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。