論文の概要: NCP: Neural Correspondence Prior for Effective Unsupervised Shape
Matching
- arxiv url: http://arxiv.org/abs/2301.05839v1
- Date: Sat, 14 Jan 2023 07:22:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 18:32:27.056475
- Title: NCP: Neural Correspondence Prior for Effective Unsupervised Shape
Matching
- Title(参考訳): NCP: 効果的な非教師あり形状マッチングに先立つニューラル対応
- Authors: Souhaib Attaiki and Maks Ovsjanikov
- Abstract要約: 我々は3次元形状間の対応を計算するための新しいパラダイムであるニューラル対応優先(NCP)を提案する。
我々のアプローチは完全に教師なしであり、挑戦する場合でも高品質な対応に繋がる可能性がある。
NCPは、多くのタスクにおいて、データ効率、高速、そして最先端の結果であることを示す。
- 参考スコア(独自算出の注目度): 31.61255365182462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Neural Correspondence Prior (NCP), a new paradigm for computing
correspondences between 3D shapes. Our approach is fully unsupervised and can
lead to high-quality correspondences even in challenging cases such as sparse
point clouds or non-isometric meshes, where current methods fail. Our first key
observation is that, in line with neural priors observed in other domains,
recent network architectures on 3D data, even without training, tend to produce
pointwise features that induce plausible maps between rigid or non-rigid
shapes. Secondly, we show that given a noisy map as input, training a feature
extraction network with the input map as supervision tends to remove artifacts
from the input and can act as a powerful correspondence denoising mechanism,
both between individual pairs and within a collection. With these observations
in hand, we propose a two-stage unsupervised paradigm for shape matching by (i)
performing unsupervised training by adapting an existing approach to obtain an
initial set of noisy matches, and (ii) using these matches to train a network
in a supervised manner. We demonstrate that this approach significantly
improves the accuracy of the maps, especially when trained within a collection.
We show that NCP is data-efficient, fast, and achieves state-of-the-art results
on many tasks. Our code can be found online: https://github.com/pvnieo/NCP.
- Abstract(参考訳): 我々は3次元形状間の対応を計算するための新しいパラダイムであるニューラル対応優先(NCP)を提案する。
私たちのアプローチは完全に教師なしで、スパースポイントクラウドや非等尺性メッシュのような現在のメソッドが失敗しても、高品質な対応につながります。
私たちの最初の重要な観察は、他の領域で観察された神経前兆と一致して、最近の3dデータにおけるネットワークアーキテクチャは、トレーニングなしでも、剛体形状と非剛体形状の間の妥当なマップを誘導するポイントワイズな特徴を生み出す傾向があることです。
第2に,ノイズマップを入力として与えると,入出力マップで特徴抽出ネットワークをトレーニングすることで,入出力からアーティファクトを取り除き,個々のペア間とコレクション内の両方において,強力な対応付け機構として機能することを示す。
これらの観察から, 形状マッチングのための2段階非教師なしパラダイムを提案する。
(i)既存のアプローチを適応させて無監督訓練を行い、騒がしい試合の最初の一式を得ること
(二)これらのマッチを用いてネットワークを指導的に訓練すること。
このアプローチは,特にコレクション内でのトレーニングにおいて,マップの精度を大幅に向上することを示す。
NCPはデータ効率が高く、高速で、多くのタスクにおいて最先端の結果が得られることを示す。
私たちのコードは、https://github.com/pvnieo/ncp.com/で閲覧できます。
関連論文リスト
- Split-and-Fit: Learning B-Reps via Structure-Aware Voronoi Partitioning [50.684254969269546]
本稿では,3次元CADモデルのバウンダリ表現(B-Reps)を取得する新しい手法を提案する。
各パーティション内に1つのプリミティブを導出するために空間分割を適用する。
我々のネットワークはニューラルなボロノイ図でNVD-Netと呼ばれ、訓練データからCADモデルのボロノイ分割を効果的に学習できることを示す。
論文 参考訳(メタデータ) (2024-06-07T21:07:49Z) - Neural Semantic Surface Maps [52.61017226479506]
本稿では,2つの属とゼロの形状の地図を自動計算する手法を提案する。
提案手法は,手動のアノテーションや3Dトレーニングデータ要求を排除し,意味的表面-表面マップを生成する。
論文 参考訳(メタデータ) (2023-09-09T16:21:56Z) - A Unified BEV Model for Joint Learning of 3D Local Features and Overlap
Estimation [12.499361832561634]
本稿では,3次元局所特徴の同時学習と重なり推定のための統合鳥眼ビュー(BEV)モデルを提案する。
提案手法は,特に重複の少ないシーンにおいて,重複予測における既存手法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-28T12:01:16Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
本稿では,ポイントクラウド上で動作している深層知覚モデルのバックボーンを事前学習するための自己教師型手法を提案する。
中心となる考え方は、3Dポイントがサンプリングされる表面の再構成であるプリテキストタスクでモデルをトレーニングすることである。
直感的には、もしネットワークがわずかな入力ポイントのみを考慮し、シーン表面を再構築できるなら、おそらく意味情報の断片をキャプチャする。
論文 参考訳(メタデータ) (2022-12-12T13:10:19Z) - Unsupervised Deep Multi-Shape Matching [15.050801537501462]
3次元形状マッチングは、コンピュータビジョンとコンピュータグラフィックスにおける長年の問題である。
本稿では, サイクル一貫性のあるマルチマッチングを実現するための, 深層多形マッチング手法を提案する。
提案手法は、いくつかの挑戦的なベンチマークデータセットに対して、最先端の結果を達成している。
論文 参考訳(メタデータ) (2022-07-20T01:22:08Z) - DFC: Deep Feature Consistency for Robust Point Cloud Registration [0.4724825031148411]
複雑なアライメントシーンのための学習に基づくアライメントネットワークを提案する。
我々は,3DMatchデータセットとKITTIオドメトリデータセットに対するアプローチを検証する。
論文 参考訳(メタデータ) (2021-11-15T08:27:21Z) - Self-Point-Flow: Self-Supervised Scene Flow Estimation from Point Clouds
with Optimal Transport and Random Walk [59.87525177207915]
シーンフローを近似する2点雲間の対応性を確立するための自己教師型手法を開発した。
本手法は,自己教師付き学習手法の最先端性能を実現する。
論文 参考訳(メタデータ) (2021-05-18T03:12:42Z) - Deep Shells: Unsupervised Shape Correspondence with Optimal Transport [52.646396621449]
本稿では,3次元形状対応のための教師なし学習手法を提案する。
提案手法は,複数のデータセット上での最先端技術よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-28T22:24:07Z) - Learning multiview 3D point cloud registration [74.39499501822682]
本稿では,エンドツーエンドで学習可能なマルチビュー3Dポイントクラウド登録アルゴリズムを提案する。
このアプローチは、エンドツーエンドのトレーニングが可能で、計算コストが小さく、最先端のマージンよりも優れています。
論文 参考訳(メタデータ) (2020-01-15T03:42:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。