論文の概要: Robust Remote Sensing Scene Classification with Multi-View Voting and
Entropy Ranking
- arxiv url: http://arxiv.org/abs/2301.05858v1
- Date: Sat, 14 Jan 2023 08:49:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 18:35:17.841970
- Title: Robust Remote Sensing Scene Classification with Multi-View Voting and
Entropy Ranking
- Title(参考訳): 多視点投票とエントロピーランキングを用いたロバストリモートセンシングシーン分類
- Authors: Jinyang Wang, Tao Wang, Min Gan, George Hadjichristofi
- Abstract要約: 本稿では,画像の部分的誤分類に対して安全な課題に対する頑健な学習手法を提案する。
具体的には,反復的多視点投票とエントロピーランキングによってラベルの誤りを段階的に除去し,訂正する。
本稿では,WHU-RS19データセットとAIDデータセットにおいて提案手法の優位性を実証的に示す。
- 参考スコア(独自算出の注目度): 9.389193315751802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep convolutional neural networks have been widely used in scene
classification of remotely sensed images. In this work, we propose a robust
learning method for the task that is secure against partially incorrect
categorization of images. Specifically, we remove and correct errors in the
labels progressively by iterative multi-view voting and entropy ranking. At
each time step, we first divide the training data into disjoint parts for
separate training and voting. The unanimity in the voting reveals the
correctness of the labels, so that we can train a strong model with only the
images with unanimous votes. In addition, we adopt entropy as an effective
measure for prediction uncertainty, in order to partially recover labeling
errors by ranking and selection. We empirically demonstrate the superiority of
the proposed method on the WHU-RS19 dataset and the AID dataset.
- Abstract(参考訳): 深部畳み込みニューラルネットワークは、リモートセンシング画像のシーン分類に広く用いられている。
本研究では,画像の部分的誤分類に対して安全な課題に対する頑健な学習手法を提案する。
具体的には,反復的多視点投票とエントロピーランキングによってラベルの誤りを段階的に除去し,訂正する。
各時間ステップで、トレーニングデータを、トレーニングと投票の別々の部分に分割します。
投票の一致性はラベルの正確性を明らかにするので、満場一致の投票で画像だけを使って強力なモデルをトレーニングできます。
また,予測の不確実性に対する有効な尺度としてエントロピーを採用し,ランク付けと選択によってラベル誤りを部分的に復元する。
WHU-RS19データセットとAIDデータセットにおいて提案手法の優位性を実証的に示す。
関連論文リスト
- Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
きめ細かい画像認識は、長年続くコンピュータビジョンの課題である。
本稿では,識別領域損失問題を軽減するため,特徴レベルのトレーニングデータを多様化することを提案する。
本手法は,いくつかの人気分類ネットワーク上での一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-09-01T11:15:50Z) - Self-training with dual uncertainty for semi-supervised medical image
segmentation [9.538419502275975]
従来の自己学習手法は、反復学習のための擬似ラベルを生成することによって、ラベル付きデータ不足の問題を部分的に解決することができる。
サンプルレベルと画素レベルの不確実性を加えて,自己学習フレームワークに基づくトレーニングプロセスの安定化を図る。
提案手法は,同じ設定下で両方のデータセットのセグメンテーション性能を向上する。
論文 参考訳(メタデータ) (2023-04-10T07:57:24Z) - Embedding contrastive unsupervised features to cluster in- and
out-of-distribution noise in corrupted image datasets [18.19216557948184]
Web画像検索に検索エンジンを使用することは、イメージデータセットを作成する際の手作業によるキュレーションに代わる誘惑的な手段である。
主な欠点は、回収された間違った(ノイズの多い)サンプルの割合である。
本稿では,教師なしのコントラスト特徴学習を用いた検出ステップから始める2段階のアルゴリズムを提案する。
比較学習のアライメントと均一性原理により,OODサンプルは単位超球面上のIDサンプルから線形に分離できることがわかった。
論文 参考訳(メタデータ) (2022-07-04T16:51:56Z) - Semantic-aware Dense Representation Learning for Remote Sensing Image
Change Detection [20.761672725633936]
ディープラーニングに基づく変化検出モデルのトレーニングはラベル付きデータに大きく依存する。
最近のトレンドは、リモートセンシング(RS)データを使用して、教師付きまたは自己教師型学習(SSL)を通じてドメイン内表現を取得することである。
複数のクラスバランス点をサンプリングし,RS画像CDに対する意味認識事前学習を提案する。
論文 参考訳(メタデータ) (2022-05-27T06:08:33Z) - Ensemble Learning with Manifold-Based Data Splitting for Noisy Label
Correction [20.401661156102897]
トレーニングデータのノイズラベルは モデルの一般化性能を著しく低下させる
特徴多様体の局所構造を利用して雑音ラベルを補正するアンサンブル学習法を提案する。
実世界の雑音ラベルデータセットに関する実験では,提案手法が既存手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-03-13T07:24:58Z) - Attention-Aware Noisy Label Learning for Image Classification [97.26664962498887]
大規模ラベル付きサンプルで学習した深層畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンにおいて顕著な進歩を遂げている。
大量のラベル付きビジュアルデータを取得する最も安価な方法は、Flickrのようなユーザーが提供するラベルでウェブサイトからクロールすることである。
本稿では,潜在的なラベルノイズのあるデータセットに基づいて学習したネットワークの識別能力を向上させるために,注目に敏感なラベル学習手法を提案する。
論文 参考訳(メタデータ) (2020-09-30T15:45:36Z) - Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive
Person Re-Identification [64.37745443119942]
本稿では,局所的なワンホット分類とグローバルなマルチクラス分類を組み合わせることで,視覚的・時間的整合性を両立させる。
3つの大規模ReIDデータセットの実験結果は、教師なしと教師なしの両方のドメイン適応型ReIDタスクにおいて提案手法の優位性を示す。
論文 参考訳(メタデータ) (2020-07-21T14:31:27Z) - Unsupervised Person Re-identification via Multi-label Classification [55.65870468861157]
本稿では,教師なしのReIDを多ラベル分類タスクとして定式化し,段階的に真のラベルを求める。
提案手法は,まず,各人物画像に単一クラスラベルを割り当てることから始まり,ラベル予測のために更新されたReIDモデルを活用することで,多ラベル分類へと進化する。
マルチラベル分類におけるReIDモデルのトレーニング効率を高めるために,メモリベースマルチラベル分類損失(MMCL)を提案する。
論文 参考訳(メタデータ) (2020-04-20T12:13:43Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z) - Unsupervised Person Re-identification via Softened Similarity Learning [122.70472387837542]
人物再識別(re-ID)はコンピュータビジョンにおいて重要なトピックである。
本稿では,ラベル付き情報を必要としないre-IDの教師なし設定について検討する。
2つの画像ベースおよびビデオベースデータセットの実験は、最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2020-04-07T17:16:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。