論文の概要: Self-training with dual uncertainty for semi-supervised medical image
segmentation
- arxiv url: http://arxiv.org/abs/2304.04441v2
- Date: Tue, 10 Oct 2023 08:33:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 13:47:08.576793
- Title: Self-training with dual uncertainty for semi-supervised medical image
segmentation
- Title(参考訳): 半監督型医用画像分割のための二重不確実性を伴う自己訓練
- Authors: Zhanhong Qiu, Haitao Gan, Ming Shi, Zhongwei Huang, Zhi Yang
- Abstract要約: 従来の自己学習手法は、反復学習のための擬似ラベルを生成することによって、ラベル付きデータ不足の問題を部分的に解決することができる。
サンプルレベルと画素レベルの不確実性を加えて,自己学習フレームワークに基づくトレーニングプロセスの安定化を図る。
提案手法は,同じ設定下で両方のデータセットのセグメンテーション性能を向上する。
- 参考スコア(独自算出の注目度): 9.538419502275975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of semi-supervised medical image segmentation, the shortage of
labeled data is the fundamental problem. How to effectively learn image
features from unlabeled images to improve segmentation accuracy is the main
research direction in this field. Traditional self-training methods can
partially solve the problem of insufficient labeled data by generating pseudo
labels for iterative training. However, noise generated due to the model's
uncertainty during training directly affects the segmentation results.
Therefore, we added sample-level and pixel-level uncertainty to stabilize the
training process based on the self-training framework. Specifically, we saved
several moments of the model during pre-training, and used the difference
between their predictions on unlabeled samples as the sample-level uncertainty
estimate for that sample. Then, we gradually add unlabeled samples from easy to
hard during training. At the same time, we added a decoder with different
upsampling methods to the segmentation network and used the difference between
the outputs of the two decoders as pixel-level uncertainty. In short, we
selectively retrained unlabeled samples and assigned pixel-level uncertainty to
pseudo labels to optimize the self-training process. We compared the
segmentation results of our model with five semi-supervised approaches on the
public 2017 ACDC dataset and 2018 Prostate dataset. Our proposed method
achieves better segmentation performance on both datasets under the same
settings, demonstrating its effectiveness, robustness, and potential
transferability to other medical image segmentation tasks. Keywords: Medical
image segmentation, semi-supervised learning, self-training, uncertainty
estimation
- Abstract(参考訳): 半教師付き医療画像セグメンテーションの分野では、ラベル付きデータの不足が根本的な問題である。
ラベルのない画像から画像の特徴を効果的に学習し、セグメンテーション精度を向上させる方法は、この分野の主要な研究方向である。
従来の自己学習手法は、反復学習のための擬似ラベルを生成することによって、ラベル付きデータ不足の問題を部分的に解決することができる。
しかし、トレーニング中のモデルの不確実性に起因するノイズは、セグメント化結果に直接影響する。
そこで我々は,自己学習フレームワークに基づくトレーニングプロセスの安定化のために,サンプルレベルと画素レベルの不確実性を付加した。
具体的には、事前トレーニング中にモデルのいくつかのモーメントを保存し、標本の標本レベルの不確実性推定としてラベルなしサンプルの予測値の違いを用いた。
そして、トレーニング中にラベルのないサンプルを徐々に追加します。
同時に、セグメント化ネットワークに異なるアップサンプリング手法を持つデコーダを追加し、2つのデコーダの出力差を画素レベルの不確実性として使用した。
簡単に言えば、ラベルなしサンプルを選択的に再訓練し、擬似ラベルに画素レベルの不確実性を割り当て、自己学習プロセスを最適化する。
我々は、2017 ACDCデータセットと2018 Prostateデータセットの5つの半教師付きアプローチと、モデルのセグメンテーション結果を比較した。
提案手法は,同じ条件下で両方のデータセットのセグメンテーション性能を向上し,その有効性,堅牢性,および他の医用画像セグメンテーションタスクへの潜在的な転送可能性を示す。
キーワード:医療画像分割、半教師付き学習、自己学習、不確実性推定
関連論文リスト
- Active learning for medical image segmentation with stochastic batches [13.171801108109198]
手動ラベリングを減らすために、アクティブラーニング(AL)は、ラベル付きトレーニングセットに注釈を付け、追加するために、未ラベルセットから最も情報性の高いサンプルをターゲットにする。
本研究の目的は、ランダムサンプリングによって提供される多様性と速度を利用して、医用画像のセグメント化のための不確実性に基づくAL手法の選択を改善することである。
論文 参考訳(メタデータ) (2023-01-18T17:25:55Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Incorporating Semi-Supervised and Positive-Unlabeled Learning for
Boosting Full Reference Image Quality Assessment [73.61888777504377]
フル参照(FR)画像品質評価(IQA)は、その知覚的差異をプリズム品質基準で測定することにより、歪み画像の視覚的品質を評価する。
ラベルなしデータは、画像劣化または復元プロセスから容易に収集することができ、ラベルなしのトレーニングデータを利用してFR-IQA性能を高めることを奨励する。
本稿では, 半教師付き, 正の未ラベル学習(PU)を用いて, ラベルなしデータを活用し, オフレーヤの悪影響を軽減することを提案する。
論文 参考訳(メタデータ) (2022-04-19T09:10:06Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
我々は、ラベルのない例を使ってモデルをトレーニングする半教師付き学習(SSL)アプローチを提案する。
提案手法であるDashは、ラベルなしデータ選択の観点から適応性を享受する。
論文 参考訳(メタデータ) (2021-09-01T23:52:29Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
メタラベルアノテーションを扱うために、コントラスト学習を適用することを提案する。
画像エンコーダの事前トレーニングにはメタラベルを使用し、半教師付きトレーニングを標準化する。
3つの異なる医用画像セグメンテーションデータセットの結果から,本手法は数回のスキャンでトレーニングしたモデルの性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2021-07-29T04:30:46Z) - Semi-supervised Semantic Segmentation with Directional Context-aware
Consistency [66.49995436833667]
我々は、ラベル付きデータの小さなセットに、全くラベル付けされていない画像のより大きなコレクションを提供する半教師付きセグメンテーション問題に焦点をあてる。
好ましいハイレベル表現は、自己認識を失わずにコンテキスト情報をキャプチャするべきである。
我々は,DCロス(Directional Contrastive Loss)を画素対ピクセルの整合性を達成するために提示する。
論文 参考訳(メタデータ) (2021-06-27T03:42:40Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
不完全アノテーションを用いた胸部X線分割のための新しいカスケードロバスト学習フレームワークを提案する。
モデルは3つの独立したネットワークから成り,ピアネットワークから有用な情報を効果的に学習できる。
提案手法は,従来の手法と比較して,セグメント化タスクの精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-04-05T15:50:16Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
セグメンテーションネットワークを訓練する学生・教師のアプローチに基づく,新しい不確実性誘導半教師学習を提案する。
提案するフレームワークは,様々な画像モダリティにまたがるバイオメディカルイメージセグメンテーションに有効である。
論文 参考訳(メタデータ) (2021-03-02T23:14:25Z) - Utilizing Uncertainty Estimation in Deep Learning Segmentation of
Fluorescence Microscopy Images with Missing Markers [7.812710681134931]
蛍光顕微鏡画像には複数のチャネルが含まれており、それぞれがサンプルを染色するマーカーを示している。
ディープラーニングベースのセグメンテーションモデルの適用は困難であり、すべてのトレーニングサンプルと将来のアプリケーションに対する推論において、事前に定義されたチャネルの組み合わせが期待できる。
画像セグメンテーションのための畳み込みニューラルネットワークのアレター的およびエピステマティックな不確かさを推定し, (i) 対応するセグメンテーション指標への回帰による不確実性特徴の解釈のためのランダムフォレストモデルを訓練することにより, ラベル付き画像のセグメンテーション品質を推定する方法を提案する。
論文 参考訳(メタデータ) (2021-01-27T15:06:04Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。