Deep Learning Provides Rapid Screen for Breast Cancer Metastasis with
Sentinel Lymph Nodes
- URL: http://arxiv.org/abs/2301.05938v1
- Date: Sat, 14 Jan 2023 15:57:00 GMT
- Title: Deep Learning Provides Rapid Screen for Breast Cancer Metastasis with
Sentinel Lymph Nodes
- Authors: Kareem Allam, Xiaohong Iris Wang, Songlin Zhang, Jianmin Ding, Kevin
Chiu, Karan Saluja, Amer Wahed, Hongxia Sun, Andy N.D. Nguyen
- Abstract summary: This study focuses on breast cancer screening with only a small set of image patches from any sentinel lymph node, positive or negative for metastasis.
We design a convolutional neural network in the Python language to build a diagnostic model for this purpose.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has been shown to be useful to detect breast cancer metastases
by analyzing whole slide images of sentinel lymph nodes. However, it requires
extensive scanning and analysis of all the lymph nodes slides for each case.
Our deep learning study focuses on breast cancer screening with only a small
set of image patches from any sentinel lymph node, positive or negative for
metastasis, to detect changes in tumor environment and not in the tumor itself.
We design a convolutional neural network in the Python language to build a
diagnostic model for this purpose. The excellent results from this preliminary
study provided a proof of concept for incorporating automated metastatic screen
into the digital pathology workflow to augment the pathologists' productivity.
Our approach is unique since it provides a very rapid screen rather than an
exhaustive search for tumor in all fields of all sentinel lymph nodes.
Related papers
- SDF-Net: A Hybrid Detection Network for Mediastinal Lymph Node Detection on Contrast CT Images [38.69240497671607]
We propose a Swin-Det Fusion Network (SDF-Net) to effectively detect lymph nodes.
SDF-Net integrates features from both segmentation and detection to enhance the detection capability of lymph nodes with various shapes and sizes.
arXiv Detail & Related papers (2024-09-10T08:27:44Z) - Hitchhiker's guide to cancer-associated lymphoid aggregates in histology
images: manual and deep learning-based quantification approaches [1.8074283261183142]
Quantification of lymphoid aggregates is a promising approach for developing prognostic and predictive tissue biomarkers.
In this article, we provide recommendations for identifying lymphoid aggregates in tissue sections from routine pathology such as hematoxylin and eosin staining.
We recently developed a deep learning-based algorithm called HookNet-TLS to detect lymphoid aggregates and germinal centers in various tissues.
arXiv Detail & Related papers (2024-03-06T15:32:05Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
Pathologists diagnose and grade prostate cancer by examining tissue from needle biopsies on glass slides.
Cancer's severity and risk of metastasis are determined by the Gleason grade, a score based on the organization and morphology of prostate cancer glands.
This paper proposes an automated workflow that follows pathologists' textitmodus operandi, isolating and classifying multi-scale patches of individual glands.
arXiv Detail & Related papers (2022-09-27T14:08:19Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z) - Predicting invasive ductal carcinoma using a Reinforcement Sample
Learning Strategy using Deep Learning [0.951828574518325]
Invasive ductal carcinoma is the second leading cause of death from cancer in women.
Due to the varying image clarity and structure of certain mammograms, it is difficult to observe major cancer characteristics.
This article presents a tumor classification algorithm that makes novel use of convolutional neural networks on breast mammogram images.
arXiv Detail & Related papers (2021-05-26T14:14:45Z) - Mediastinal lymph nodes segmentation using 3D convolutional neural
network ensembles and anatomical priors guiding [0.0]
The presence of enlarged and potentially malignant lymph nodes must be assessed to properly estimate disease progression and select the best treatment strategy.
The use of 3D convolutional neural networks, either through slab-wise schemes or the leveraging of downsampled entire volumes, is investigated.
For the 1178 lymph nodes with a short-axis diameter $geq10$ mm, our best performing approach reached a patient-wise recall of 92%, a false positive per patient ratio of 5, and a segmentation overlap of 80.5%.
arXiv Detail & Related papers (2021-02-11T14:51:34Z) - Gleason Grading of Histology Prostate Images through Semantic
Segmentation via Residual U-Net [60.145440290349796]
The final diagnosis of prostate cancer is based on the visual detection of Gleason patterns in prostate biopsy by pathologists.
Computer-aided-diagnosis systems allow to delineate and classify the cancerous patterns in the tissue.
The methodological core of this work is a U-Net convolutional neural network for image segmentation modified with residual blocks able to segment cancerous tissue.
arXiv Detail & Related papers (2020-05-22T19:49:10Z) - A Study of Deep Learning Colon Cancer Detection in Limited Data Access
Scenarios [6.338265282525758]
Deep learning methods for classification and detection have shown great potential, but often require large amounts of training data.
For many cancer types, the scarceness of data creates barriers for training DL models.
We show how it is possible to detect cancer metastasis with no or very little lymph node data, opening up for the possibility that existing, annotated histopathology data could generalize to other domains.
arXiv Detail & Related papers (2020-05-20T19:28:07Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.