Learning to adapt unknown noise for hyperspectral image denoising
- URL: http://arxiv.org/abs/2301.06081v2
- Date: Tue, 08 Oct 2024 02:17:06 GMT
- Title: Learning to adapt unknown noise for hyperspectral image denoising
- Authors: Xiangyu Rui, Xiangyong Cao, Jun Shu, Qian Zhao, Deyu Meng,
- Abstract summary: We propose to predict the weight by a hyper-weight network (i.e., HWnet)
The HWnet is learned exactly from several model-based HSI denoising methods in a bi-level optimization framework.
Extensive experiments verify that the proposed HWnet can effecitvely help to improve the ability of an HSI denoising model to handle different complex noises.
- Score: 47.211404580222855
- License:
- Abstract: For hyperspectral image (HSI) denoising task, the causes of noise embeded in an HSI are typically complex and uncontrollable. Thus, it remains a challenge for model-based HSI denoising methods to handle complex noise. To enhance the noise-handling capabilities of existing model-based methods, we resort to design a general weighted data fidelity term. The weight in this term is used to assess the noise intensity and thus elementwisely adjust the contribution of the observed noisy HSI in a denoising model. The similar concept of "weighting" has been hinted in several methods. Due to the unknown nature of the noise distribution, the implementation of "weighting" in these works are usually achieved via empirical formula for specific denoising method. In this work, we propose to predict the weight by a hyper-weight network (i.e., HWnet). The HWnet is learned exactly from several model-based HSI denoising methods in a bi-level optimization framework based on the data-driven methodology. For a noisy HSI, the learned HWnet outputs its corresponding weight. Then the weighted data fidelity term implemented with the predicted weight can be explicitly combined with a target model-based HSI denoising method. In this way, our HWnet achieves the goal of enhancing the noise adaptation ability of model-based HSI denoising methods for different noisy HSIs. Extensive experiments verify that the proposed HWnet can effecitvely help to improve the ability of an HSI denoising model to handle different complex noises. This further implies that our HWnet could transfer the noise knowledge at the model level and we also study the corresponding generalization theory for simple illustration.
Related papers
- Pan-denoising: Guided Hyperspectral Image Denoising via Weighted Represent Coefficient Total Variation [20.240211073097758]
This paper introduces a novel paradigm for hyperspectral image (HSI) denoising, which is termed textitpan-denoising.
Panchromatic (PAN) images capture similar structures and textures to HSIs but with less noise. Consequently, pan-denoising has the potential to uncover underlying structures and details beyond the internal information modeling of traditional HSI denoising methods.
Experiments on synthetic and real-world datasets demonstrate that PWRCTV outperforms several state-of-the-art methods in terms of metrics and visual quality.
arXiv Detail & Related papers (2024-07-08T16:05:56Z) - Realistic Noise Synthesis with Diffusion Models [68.48859665320828]
Deep image denoising models often rely on large amount of training data for the high quality performance.
We propose a novel method that synthesizes realistic noise using diffusion models, namely Realistic Noise Synthesize Diffusor (RNSD)
RNSD can incorporate guided multiscale content, such as more realistic noise with spatial correlations can be generated at multiple frequencies.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Degradation-Noise-Aware Deep Unfolding Transformer for Hyperspectral
Image Denoising [9.119226249676501]
Hyperspectral images (HSIs) are often quite noisy because of narrow band spectral filtering.
To reduce the noise in HSI data cubes, both model-driven and learning-based denoising algorithms have been proposed.
This paper proposes a Degradation-Noise-Aware Unfolding Network (DNA-Net) that addresses these issues.
arXiv Detail & Related papers (2023-05-06T13:28:20Z) - Denoising Distantly Supervised Named Entity Recognition via a
Hypergeometric Probabilistic Model [26.76830553508229]
Hypergeometric Learning (HGL) is a denoising algorithm for distantly supervised named entity recognition.
HGL takes both noise distribution and instance-level confidence into consideration.
Experiments show that HGL can effectively denoise the weakly-labeled data retrieved from distant supervision.
arXiv Detail & Related papers (2021-06-17T04:01:25Z) - SMDS-Net: Model Guided Spectral-Spatial Network for Hyperspectral Image
Denoising [10.597014770267672]
Deep learning (DL) based hyperspectral images (HSIs) denoising approaches directly learn the nonlinear mapping between observed noisy images and underlying clean images.
We introduce a novel model guided interpretable network for HSI denoising.
arXiv Detail & Related papers (2020-12-03T11:05:01Z) - Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising [54.730707387866076]
We introduce Noise2Same, a novel self-supervised denoising framework.
In particular, Noise2Same requires neither J-invariance nor extra information about the noise model.
Our results show that our Noise2Same remarkably outperforms previous self-supervised denoising methods.
arXiv Detail & Related papers (2020-10-22T18:12:26Z) - Evolving Deep Convolutional Neural Networks for Hyperspectral Image
Denoising [6.869192200282213]
We propose a novel algorithm to automatically build an optimal Convolutional Neural Network (CNN) to effectively denoise HSIs.
The experiments of the proposed algorithm have been well-designed and compared against the state-of-the-art peer competitors.
arXiv Detail & Related papers (2020-08-15T03:04:11Z) - Shape Matters: Understanding the Implicit Bias of the Noise Covariance [76.54300276636982]
Noise in gradient descent provides a crucial implicit regularization effect for training over parameterized models.
We show that parameter-dependent noise -- induced by mini-batches or label perturbation -- is far more effective than Gaussian noise.
Our analysis reveals that parameter-dependent noise introduces a bias towards local minima with smaller noise variance, whereas spherical Gaussian noise does not.
arXiv Detail & Related papers (2020-06-15T18:31:02Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.