論文の概要: Bike Frames: Understanding the Implicit Portrayal of Cyclists in the News
- arxiv url: http://arxiv.org/abs/2301.06178v2
- Date: Tue, 16 Jul 2024 20:42:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 00:00:34.648854
- Title: Bike Frames: Understanding the Implicit Portrayal of Cyclists in the News
- Title(参考訳): 自転車のフレーム:ニュースの中のサイクリストの欠かせないポートレイダルを理解する
- Authors: Xingmeng Zhao, Dan Schumacher, Sashank Nalluri, Xavier Walton, Suhana Shrestha, Anthony Rios,
- Abstract要約: 報道機関のイデオロギーと報告スタイルは、しばしばサイクリングに対する大衆の認識に影響を及ぼす。
本稿では,ニュース見出し中のサイクリストの知覚を検知する手法を開発する。
BikeFrame Chain-of-Codeフレームワークを導入し、サイクリストの知覚を予測し、事故に関連する見出しを特定し、欠陥を判定する。
- 参考スコア(独自算出の注目度): 6.444554876453554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Increasing cycling for transportation or recreation can boost health and reduce the environmental impacts of vehicles. However, news agencies' ideologies and reporting styles often influence public perception of cycling. For example, if news agencies overly report cycling accidents, it may make people perceive cyclists as "dangerous," reducing the number of cyclists who opt to cycle. Additionally, a decline in cycling can result in less government funding for safe infrastructure. In this paper, we develop a method for detecting the perceived perception of cyclists within news headlines. We introduce a new dataset called ``Bike Frames'' to accomplish this. The dataset consists of 31,480 news headlines and 1,500 annotations. Our focus is on analyzing 11,385 headlines from the United States. We also introduce the BikeFrame Chain-of-Code framework to predict cyclist perception, identify accident-related headlines, and determine fault. This framework uses pseudocode for precise logic and integrates news agency bias analysis for improved predictions over traditional chain-of-thought reasoning in large language models. Our method substantially outperforms other methods, and most importantly, we find that incorporating news bias information substantially impacts performance, improving the average F1 from .739 to .815. Finally, we perform a comprehensive case study on US-based news headlines, finding reporting differences between news agencies and cycling-specific websites as well as differences in reporting depending on the gender of cyclists. WARNING: This paper contains descriptions of accidents and death.
- Abstract(参考訳): 輸送やレクリエーションのためのサイクリングの増加は、健康を増し、車両の環境への影響を減少させる。
しかし、報道機関のイデオロギーや報告スタイルは、しばしばサイクリングに対する大衆の認識に影響を及ぼす。
例えば、報道機関がサイクリング事故を過度に報告すると、人々はサイクリストを「危険な」と認識させ、サイクリングを選択したサイクリストの数を減少させる可能性がある。
さらに、サイクリングの減少は、安全なインフラに対する政府資金の削減につながる可能性がある。
本稿では,ニュース見出し中のサイクリストの知覚を検知する手法を開発する。
これを達成するために ``Bike Frames'' と呼ばれる新しいデータセットを導入します。
データセットは31,480のニュース見出しと1500のアノテーションで構成されている。
私たちの焦点は、米国からの11,385の見出しを分析することです。
BikeFrame Chain-of-Codeフレームワークを導入し、サイクリストの知覚を予測し、事故に関連する見出しを特定し、欠陥を判定する。
このフレームワークは、正確な論理に擬似コードを使用し、ニューズエージェンシーのバイアス分析を統合して、大規模言語モデルにおける従来のチェーン・オブ・シークレット推論に対する予測を改善する。
提案手法は,他の手法よりも優れており,特に,ニュースバイアス情報の導入がパフォーマンスに大きく影響を与え,平均F1が.739から.815に向上することがわかった。
最後に,米国発ニュースの見出しを包括的に分析し,報道機関とサイクリング特化ウェブサイトの相違や,サイクリストの性別による報告の相違を見出した。
WARNING: 本論文では事故と死亡について記述する。
関連論文リスト
- Evaluating the effects of Data Sparsity on the Link-level Bicycling Volume Estimation: A Graph Convolutional Neural Network Approach [54.84957282120537]
本稿では,リンクレベルの自転車のボリュームをモデル化するために,グラフ畳み込みネットワークアーキテクチャを利用する最初の研究について述べる。
オーストラリア,メルボルン市全体での年間平均自転車数(AADB)を,Strava Metro の自転車数データを用いて推定した。
以上の結果から,GCNモデルは従来のAADB数予測モデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-10-11T04:53:18Z) - CycleCrash: A Dataset of Bicycle Collision Videos for Collision Prediction and Analysis [21.584020544141797]
CycleCrashは、3000のダッシュカムビデオと436,347フレームからなる新しいデータセットだ。
このデータセットは、サイクリストにとって潜在的に危険な条件に焦点を当てた、9つの異なるサイクリスト衝突予測と分類タスクを可能にする。
本稿では,ConvNeXt空間エンコーダと非定常トランスフォーマーを併用した新しい手法であるVidNeXtを提案する。
論文 参考訳(メタデータ) (2024-09-30T04:46:35Z) - Tracking the Newsworthiness of Public Documents [107.12303391111014]
この研究は、サンフランシスコ・クロニクル(San Francisco Chronicle)によるサンフランシスコ・ベイエリアにおける地方公共政策のニュース報道に焦点を当てている。
まず、新聞記事、公共政策文書、会議記録を収集し、確率的関係モデルを用いてそれらをリンクする。
第二に、ポリシー項目がカバーされるかどうかを予測するために、ニューズサステイネス予測という新しいタスクを定義します。
論文 参考訳(メタデータ) (2023-11-16T10:05:26Z) - Bent & Broken Bicycles: Leveraging synthetic data for damaged object
re-identification [59.80753896200009]
変形や欠落による視覚的外観の変化と微妙なクラス内変化を区別することを目的とした,損傷対象の再識別の新たな課題を提案する。
我々は、コンピュータ生成画像のパワーを活用して、半自動で、損傷前後に同じ自転車の高品質な合成画像を作成する。
このタスクのベースラインとして,マルチタスクでトランスフォーマーをベースとしたディープネットワークであるTransReI3Dを提案する。
論文 参考訳(メタデータ) (2023-04-16T20:23:58Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
本稿では,大規模ニュースコーパスにおけるニュースコンテンツから直接メディア選択バイアスのパターンを発見するために,スケーラブルなNLPシステムを構築する上での課題について検討する。
我々は,世界519のニュースソースから180万件のニュース記事のコーパスであるNELA-2020のケーススタディを通じて,フレームワークの能力を示す。
論文 参考訳(メタデータ) (2023-04-06T23:36:45Z) - Monocular Cyclist Detection with Convolutional Neural Networks [0.0]
本研究は,盲点に対する運転者の注意不足に起因する車両と自転車の衝突回数を減らすことを目的としている。
我々は、物体検出畳み込みニューラルネットワークを用いてサイクリストを検出できる最先端のリアルタイム単眼サイクリスト検出を設計した。
このサイクリスト検出装置は、サイクリストを正確にかつ迅速に検出し、サイクリストの安全性を大幅に向上させる可能性があると結論付けている。
論文 参考訳(メタデータ) (2023-01-16T13:54:13Z) - Predicting Citi Bike Demand Evolution Using Dynamic Graphs [81.12174591442479]
ニューヨーク市のCiti Bikeデータセットにおける自転車需要予測にグラフニューラルネットワークモデルを適用した。
本稿では,ニューヨーク市のCiti Bikeデータセットにおける自転車需要予測にグラフニューラルネットワークモデルを適用しようとする。
論文 参考訳(メタデータ) (2022-12-18T21:43:27Z) - CycleSense: Detecting Near Miss Incidents in Bicycle Traffic from Mobile
Motion Sensors [3.5127092215732176]
世界中の都市では、自動車は健康と交通の問題を引き起こし、自転車のモルタルシェアの増加によって部分的に緩和される可能性がある。
しかし、多くの人々は、認識された安全性の欠如のためにサイクリングを避けます。
都市計画者にとって、サイクリストが安全な場所やそうでない場所についての洞察が欠けているため、この問題に対処することは難しい。
論文 参考訳(メタデータ) (2022-04-21T21:43:23Z) - Misinfo Belief Frames: A Case Study on Covid & Climate News [49.979419711713795]
読者がニュースの信頼性や誤った情報の影響をどのように認識するかを理解するための形式主義を提案する。
23.5kの見出しに66kの推論データセットであるMisinfo Belief Frames (MBF) corpusを紹介する。
大規模言語モデルを用いて誤情報フレームを予測した結果,機械生成推論がニュース見出しに対する読者の信頼に影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2021-04-18T09:50:11Z) - Exploring the weather impact on bike sharing usage through a clustering
analysis [7.541020519717183]
本研究の目的は、ワシントンD.C.の自転車利用にどの程度の天気がどんな影響を及ぼすかを調査することである。
ワシントンD.C.では,自転車の利用データと天気データを収集し,k平均クラスタリングアルゴリズムを用いて分析する。
論文 参考訳(メタデータ) (2020-08-17T12:24:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。