論文の概要: Deep Learning based Novel Cascaded Approach for Skin Lesion Analysis
- arxiv url: http://arxiv.org/abs/2301.06226v1
- Date: Mon, 16 Jan 2023 01:08:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 16:44:11.691076
- Title: Deep Learning based Novel Cascaded Approach for Skin Lesion Analysis
- Title(参考訳): 深層学習に基づく皮膚病変解析のための新しいカスケードアプローチ
- Authors: Shubham Innani, Prasad Dutande, Bhakti Baheti, Ujjwal Baid, and Sanjay
Talbar
- Abstract要約: 本研究は,2段階の皮膚病変セグメンテーションの枠組みに焦点をあて,その後に病変解析の分類を行う。
皮膚病変分類のためのエンコーダデコーダアーキテクチャとCNNに基づく分類ネットワークを設計し,深層畳み込みニューラルネットワークアーキテクチャの有効性を検討した。
本手法は, 従来の分類法により, 病変の分類精度が有意に向上した第1種である。
- 参考スコア(独自算出の注目度): 7.371818587876888
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Automatic lesion analysis is critical in skin cancer diagnosis and ensures
effective treatment. The computer aided diagnosis of such skin cancer in
dermoscopic images can significantly reduce the clinicians workload and help
improve diagnostic accuracy. Although researchers are working extensively to
address this problem, early detection and accurate identification of skin
lesions remain challenging. This research focuses on a two step framework for
skin lesion segmentation followed by classification for lesion analysis. We
explored the effectiveness of deep convolutional neural network based
architectures by designing an encoder-decoder architecture for skin lesion
segmentation and CNN based classification network. The proposed approaches are
evaluated quantitatively in terms of the Accuracy, mean Intersection over Union
and Dice Similarity Coefficient. Our cascaded end to end deep learning based
approach is the first of its kind, where the classification accuracy of the
lesion is significantly improved because of prior segmentation.
- Abstract(参考訳): 自動病変解析は皮膚癌診断において重要であり、効果的に治療される。
皮膚内視鏡画像におけるそのような皮膚癌の診断を支援するコンピュータは、臨床医の負担を大幅に低減し、診断精度を向上させる。
研究者はこの問題に広く取り組んでいるが、皮膚病変の早期発見と正確な同定は依然として困難である。
本研究は,2段階の皮膚病変セグメンテーションの枠組みと病変解析の分類に焦点を当てた。
皮膚病変分類のためのエンコーダデコーダアーキテクチャとCNNに基づく分類ネットワークを設計し,深層畳み込みニューラルネットワークアーキテクチャの有効性を検討した。
提案手法は, 精度, 平均交叉率, dice類似度係数の観点から定量的に評価した。
われわれのカスケード・エンド・エンド・エンド・ディープ・ラーニング・ベース・アプローチは最初のアプローチであり,事前のセグメンテーションにより病変の分類精度が著しく向上した。
関連論文リスト
- Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Lesion detection in contrast enhanced spectral mammography [0.0]
近年の乳房画像解析のためのニューラルネットワークモデルの出現は、コンピュータ支援診断における画期的な進歩である。
本研究は,CESMリコンビネート画像に対する深層学習に基づくコンピュータ支援診断開発を提案し,病変の検出と症例の分類を行う。
論文 参考訳(メタデータ) (2022-07-20T06:49:02Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Segmentation and ABCD rule extraction for skin tumors classification [0.0]
悪性皮膚病変を鑑別するために臨床診断に用いたABCDルールに基づく自動診断システムを提案する。
このフレームワークは320枚の画像の皮膚科データベース [16] でテストされている。
論文 参考訳(メタデータ) (2021-06-08T14:07:59Z) - Automated Detection of Coronary Artery Stenosis in X-ray Angiography
using Deep Neural Networks [0.0]
X線冠動脈造影画像からの狭窄検出を部分的に自動化する2段階のディープラーニングフレームワークを提案する。
左/右冠動脈角ビューの分類作業において0.97の精度を達成し、LCAとRCAの関心領域の決定について0.68/0.73のリコールを行った。
論文 参考訳(メタデータ) (2021-03-04T11:45:54Z) - Lesion Net -- Skin Lesion Segmentation Using Coordinate Convolution and
Deep Residual Units [18.908448254745473]
メラノーマの皮膚病変のセグメント化の精度は、トレーニング、不規則な形状、不明瞭な境界、および異なる皮膚色のためのデータが少ないため、かなり困難な作業です。
提案手法は皮膚病変分節の精度を向上させるのに役立つ。
以上の結果から,提案モデルが既存の皮膚病変の分画法と同等以上の性能を示した。
論文 参考訳(メタデータ) (2020-12-28T14:43:04Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
本稿では,皮膚病変のセグメンテーションを改善するために,Dual Objective Networks (DONet) という,シンプルで効果的なフレームワークを提案する。
我々のDONetは2つの対称デコーダを採用し、異なる目標に近づくための異なる予測を生成する。
皮膚内視鏡画像における多種多様な病変のスケールと形状の課題に対処するために,再帰的コンテキスト符号化モジュール(RCEM)を提案する。
論文 参考訳(メタデータ) (2020-08-19T06:02:46Z) - Automatic Lesion Detection System (ALDS) for Skin Cancer Classification
Using SVM and Neural Classifiers [0.6445605125467573]
自動病変検出システム(ALDS)は、医師や皮膚科医が皮膚がんの適切な解析と治療のための第2の意見を得るのに役立つ。
本稿では,確率論的アプローチに基づく改良ALDSフレームワークの開発に焦点をあてる。
論文 参考訳(メタデータ) (2020-03-13T13:31:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。