論文の概要: Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis
- arxiv url: http://arxiv.org/abs/2504.13754v2
- Date: Tue, 29 Apr 2025 03:26:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.608027
- Title: Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis
- Title(参考訳): コントラスト的マルチスケール画像解析による神経芽腫の正確な診断に向けて
- Authors: Zhu Zhu, Shuo Jiang, Jingyuan Zheng, Yawen Li, Yifei Chen, Manli Zhao, Weizhong Gu, Feiwei Qin, Jinhu Wang, Gang Yu,
- Abstract要約: CMSwinKANは、病理画像分類に適したコントラスト学習に基づくマルチスケール機能融合モデルである。
臨床所見から導かれるソフト投票機構を導入し,パッチレベルの予測をスライド画像全体の分類にシームレスにブリッジする。
その結果、CMSwinKANは、既存の最先端の病理モデルよりも、大規模なデータセットで事前訓練されたモデルよりもパフォーマンスがよいことが示された。
- 参考スコア(独自算出の注目度): 16.268045905735818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuroblastoma, adrenal-derived, is among the most common pediatric solid malignancies, characterized by significant clinical heterogeneity. Timely and accurate pathological diagnosis from hematoxylin and eosin-stained whole slide images is critical for patient prognosis. However, current diagnostic practices primarily rely on subjective manual examination by pathologists, leading to inconsistent accuracy. Existing automated whole slide image classification methods encounter challenges such as poor interpretability, limited feature extraction capabilities, and high computational costs, restricting their practical clinical deployment. To overcome these limitations, we propose CMSwinKAN, a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification, which enhances the Swin Transformer architecture by integrating a Kernel Activation Network within its multilayer perceptron and classification head modules, significantly improving both interpretability and accuracy. By fusing multi-scale features and leveraging contrastive learning strategies, CMSwinKAN mimics clinicians' comprehensive approach, effectively capturing global and local tissue characteristics. Additionally, we introduce a heuristic soft voting mechanism guided by clinical insights to seamlessly bridge patch-level predictions to whole slide image-level classifications. We validate CMSwinKAN on the PpNTs dataset, which was collaboratively established with our partner hospital and the publicly accessible BreakHis dataset. Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets. Our source code is available at https://github.com/JSLiam94/CMSwinKAN.
- Abstract(参考訳): 副腎由来の神経芽細胞腫は最も一般的な小児固形腫瘍の1つである。
ヘマトキシリンおよびエオシン含有全スライド画像からのタイムリーかつ正確な病理診断は,患者の予後に重要である。
しかし、現在の診断は、主に病理医による主観的手技検査に依存しており、矛盾する精度に繋がる。
既存のスライド画像の自動分類手法は, 解釈性の低下, 特徴抽出能力の制限, 計算コストの増大といった課題に遭遇し, 臨床的展開を制限している。
これらの制約を克服するため,CMSwinKANを提案する。CMSwinKANは病理画像分類に適したマルチスケール機能融合モデルであり,カーネル活性化ネットワークを多層パーセプトロンと分類ヘッドモジュールに統合することにより,スウィントランスフォーマーアーキテクチャを改良し,解釈性と精度を向上する。
マルチスケールの特徴を融合させ、対照的な学習戦略を活用することで、CMSwinKANはクリニックの包括的なアプローチを模倣し、グローバルな組織特性と局所的な組織特性を効果的に捉える。
さらに,臨床所見から導かれるヒューリスティックなソフト投票機構を導入し,パッチレベルの予測をスライド画像全体の分類にシームレスにブリッジする。
PpNTsデータセット上でCMSwinKANを検証し、パートナー病院とパブリックアクセス可能なBreakHisデータセットと共同で確立した。
その結果、CMSwinKANは、既存の最先端の病理モデルよりも、大規模なデータセットで事前訓練されたモデルよりもパフォーマンスがよいことが示された。
ソースコードはhttps://github.com/JSLiam94/CMSwinKANで公開されています。
関連論文リスト
- HDC: Hierarchical Distillation for Multi-level Noisy Consistency in Semi-Supervised Fetal Ultrasound Segmentation [2.964206587462833]
HDCと呼ばれる新しい半教師付きセグメンテーションフレームワークが提案されている。
この枠組みは,特徴表現の整合化のための相関誘導損失と,雑音の多い学生学習を安定化するための相互情報損失の2つの目的を持つ階層的蒸留機構を導入している。
論文 参考訳(メタデータ) (2025-04-14T04:52:24Z) - Leveraging Vision-Language Embeddings for Zero-Shot Learning in Histopathology Images [7.048241543461529]
ゼロショット組織像分類におけるこれらの課題に対処するため, MR-PHE(Multi-Resolution Prompt-Guided Hybrid Embedding)と呼ばれる新しいフレームワークを提案する。
我々は,グローバルな画像埋め込みと重み付けされたパッチ埋め込みを統合したハイブリッドな埋め込み戦略を導入する。
類似性に基づくパッチ重み付け機構は、クラス埋め込みとの関連性に基づいて、アテンションのような重み付けをパッチに割り当てる。
論文 参考訳(メタデータ) (2025-03-13T12:18:37Z) - Hybrid Interpretable Deep Learning Framework for Skin Cancer Diagnosis: Integrating Radial Basis Function Networks with Explainable AI [1.1049608786515839]
皮膚がんは世界中で最も流行し、致命的な疾患の1つである。
本稿では,畳み込みニューラルネットワーク(CNN)とラジアル基底関数(RBF)ネットワークを統合するハイブリッドディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-24T19:19:02Z) - Adversarial Vessel-Unveiling Semi-Supervised Segmentation for Retinopathy of Prematurity Diagnosis [9.683492465191241]
広範囲な手動血管アノテーションを必要とせず,ROP研究を進めるための半教師付きセグメンテーションフレームワークを提案する。
ラベル付きデータにのみ依存する従来の手法とは異なり,本手法では不確実性重み付き容器公開モジュールとドメイン対向学習を統合している。
我々は、パブリックデータセットと社内ROPデータセットに対するアプローチを検証し、複数の評価指標で優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-11-14T02:40:34Z) - Large-scale cervical precancerous screening via AI-assisted cytology whole slide image analysis [11.148919818020495]
頸部がんは婦人科における主要な悪性腫瘍であり続けており、世界規模で女性の健康に永続的な脅威をもたらしている。
Whole Slide Image (WSI) による早期スクリーニングは、このがんの進行を予防し、生存率を向上させるために重要である。
しかし、病理学者の単体検査は、WSI内でレビューする必要がある膨大な数の細胞のために、必然的に偽陰性に悩まされる。
論文 参考訳(メタデータ) (2024-07-28T15:29:07Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Learning Interpretable Microscopic Features of Tumor by Multi-task
Adversarial CNNs To Improve Generalization [1.7371375427784381]
既存のCNNモデルはブラックボックスとして機能し、医師が重要な診断機能がモデルによって使用されることを保証しない。
ここでは,マルチタスクと敵の損失を両立させる不確実性に基づく重み付けの組み合わせをエンド・ツー・エンドで学習することにより,病理的特徴に焦点を合わせることを推奨する。
AUC 0.89 (0.01) がベースラインであるAUC 0.86 (0.005) に対して最も高い値を示した。
論文 参考訳(メタデータ) (2020-08-04T12:10:35Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。