The Role of Baselines in Policy Gradient Optimization
- URL: http://arxiv.org/abs/2301.06276v1
- Date: Mon, 16 Jan 2023 06:28:00 GMT
- Title: The Role of Baselines in Policy Gradient Optimization
- Authors: Jincheng Mei and Wesley Chung and Valentin Thomas and Bo Dai and Csaba
Szepesvari and Dale Schuurmans
- Abstract summary: We show that the emphstate value baseline allows on-policy.
emphnatural policy gradient (NPG) to converge to a globally optimal.
policy at an $O (1/t) rate gradient.
We find that the primary effect of the value baseline is to textbfreduce the aggressiveness of the updates rather than their variance.
- Score: 83.42050606055822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the effect of baselines in on-policy stochastic policy gradient
optimization, and close the gap between the theory and practice of policy
optimization methods. Our first contribution is to show that the \emph{state
value} baseline allows on-policy stochastic \emph{natural} policy gradient
(NPG) to converge to a globally optimal policy at an $O(1/t)$ rate, which was
not previously known. The analysis relies on two novel findings: the expected
progress of the NPG update satisfies a stochastic version of the non-uniform
\L{}ojasiewicz (N\L{}) inequality, and with probability 1 the state value
baseline prevents the optimal action's probability from vanishing, thus
ensuring sufficient exploration. Importantly, these results provide a new
understanding of the role of baselines in stochastic policy gradient: by
showing that the variance of natural policy gradient estimates remains
unbounded with or without a baseline, we find that variance reduction
\emph{cannot} explain their utility in this setting. Instead, the analysis
reveals that the primary effect of the value baseline is to \textbf{reduce the
aggressiveness of the updates} rather than their variance. That is, we
demonstrate that a finite variance is \emph{not necessary} for almost sure
convergence of stochastic NPG, while controlling update aggressiveness is both
necessary and sufficient. Additional experimental results verify these
theoretical findings.
Related papers
- Policy Gradient with Active Importance Sampling [55.112959067035916]
Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
arXiv Detail & Related papers (2024-05-09T09:08:09Z) - Optimization Landscape of Policy Gradient Methods for Discrete-time
Static Output Feedback [22.21598324895312]
This paper analyzes the optimization landscape inherent to policy gradient methods when applied to static output feedback control.
We derive novel findings regarding convergence (and nearly dimension-free rate) to stationary points for three policy gradient methods.
We provide proof that the vanilla policy gradient method exhibits linear convergence towards local minima when near such minima.
arXiv Detail & Related papers (2023-10-29T14:25:57Z) - Bi-Level Offline Policy Optimization with Limited Exploration [1.8130068086063336]
We study offline reinforcement learning (RL) which seeks to learn a good policy based on a fixed, pre-collected dataset.
We propose a bi-level structured policy optimization algorithm that models a hierarchical interaction between the policy (upper-level) and the value function (lower-level)
We evaluate our model using a blend of synthetic, benchmark, and real-world datasets for offline RL, showing that it performs competitively with state-of-the-art methods.
arXiv Detail & Related papers (2023-10-10T02:45:50Z) - Importance-Weighted Offline Learning Done Right [16.4989952150404]
We study the problem of offline policy optimization in contextual bandit problems.
The goal is to learn a near-optimal policy based on a dataset of decision data collected by a suboptimal behavior policy.
We show that a simple alternative approach based on the "implicit exploration" estimator of citet2015 yields performance guarantees that are superior in nearly all possible terms to all previous results.
arXiv Detail & Related papers (2023-09-27T16:42:10Z) - Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium
Learning from Offline Datasets [101.5329678997916]
We study episodic two-player zero-sum Markov games (MGs) in the offline setting.
The goal is to find an approximate Nash equilibrium (NE) policy pair based on a dataset collected a priori.
arXiv Detail & Related papers (2022-02-15T15:39:30Z) - Optimal Estimation of Off-Policy Policy Gradient via Double Fitted
Iteration [39.250754806600135]
Policy (PG) estimation becomes a challenge when we are not allowed to sample with the target policy.
Conventional methods for off-policy PG estimation often suffer from significant bias or exponentially large variance.
In this paper, we propose the double Fitted PG estimation (FPG) algorithm.
arXiv Detail & Related papers (2022-01-31T20:23:52Z) - A general sample complexity analysis of vanilla policy gradient [101.16957584135767]
Policy gradient (PG) is one of the most popular reinforcement learning (RL) problems.
"vanilla" theoretical understanding of PG trajectory is one of the most popular methods for solving RL problems.
arXiv Detail & Related papers (2021-07-23T19:38:17Z) - Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation [49.502277468627035]
This paper studies the statistical theory of batch data reinforcement learning with function approximation.
Consider the off-policy evaluation problem, which is to estimate the cumulative value of a new target policy from logged history.
arXiv Detail & Related papers (2020-02-21T19:20:57Z) - Statistically Efficient Off-Policy Policy Gradients [80.42316902296832]
We consider the statistically efficient estimation of policy gradients from off-policy data.
We propose a meta-algorithm that achieves the lower bound without any parametric assumptions.
We establish guarantees on the rate at which we approach a stationary point when we take steps in the direction of our new estimated policy gradient.
arXiv Detail & Related papers (2020-02-10T18:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.