Distributionally Robust Policy Learning under Concept Drifts
- URL: http://arxiv.org/abs/2412.14297v1
- Date: Wed, 18 Dec 2024 19:53:56 GMT
- Title: Distributionally Robust Policy Learning under Concept Drifts
- Authors: Jingyuan Wang, Zhimei Ren, Ruohan Zhan, Zhengyuan Zhou,
- Abstract summary: This paper studies a more nuanced problem -- robust policy learning under the concept drift.
We first provide a doubly-robust estimator for evaluating the worst-case average reward of a given policy.
We then propose a learning algorithm that outputs the policy maximizing the estimated policy value within a given policy class.
- Score: 33.44768994272614
- License:
- Abstract: Distributionally robust policy learning aims to find a policy that performs well under the worst-case distributional shift, and yet most existing methods for robust policy learning consider the worst-case joint distribution of the covariate and the outcome. The joint-modeling strategy can be unnecessarily conservative when we have more information on the source of distributional shifts. This paper studiesa more nuanced problem -- robust policy learning under the concept drift, when only the conditional relationship between the outcome and the covariate changes. To this end, we first provide a doubly-robust estimator for evaluating the worst-case average reward of a given policy under a set of perturbed conditional distributions. We show that the policy value estimator enjoys asymptotic normality even if the nuisance parameters are estimated with a slower-than-root-$n$ rate. We then propose a learning algorithm that outputs the policy maximizing the estimated policy value within a given policy class $\Pi$, and show that the sub-optimality gap of the proposed algorithm is of the order $\kappa(\Pi)n^{-1/2}$, with $\kappa(\Pi)$ is the entropy integral of $\Pi$ under the Hamming distance and $n$ is the sample size. A matching lower bound is provided to show the optimality of the rate. The proposed methods are implemented and evaluated in numerical studies, demonstrating substantial improvement compared with existing benchmarks.
Related papers
- Statistical Analysis of Policy Space Compression Problem [54.1754937830779]
Policy search methods are crucial in reinforcement learning, offering a framework to address continuous state-action and partially observable problems.
Reducing the policy space through policy compression emerges as a powerful, reward-free approach to accelerate the learning process.
This technique condenses the policy space into a smaller, representative set while maintaining most of the original effectiveness.
arXiv Detail & Related papers (2024-11-15T02:46:55Z) - Policy Gradient with Active Importance Sampling [55.112959067035916]
Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
arXiv Detail & Related papers (2024-05-09T09:08:09Z) - Importance-Weighted Offline Learning Done Right [16.4989952150404]
We study the problem of offline policy optimization in contextual bandit problems.
The goal is to learn a near-optimal policy based on a dataset of decision data collected by a suboptimal behavior policy.
We show that a simple alternative approach based on the "implicit exploration" estimator of citet2015 yields performance guarantees that are superior in nearly all possible terms to all previous results.
arXiv Detail & Related papers (2023-09-27T16:42:10Z) - Adaptive Policy Learning to Additional Tasks [3.43814540650436]
This paper develops a policy learning method for tuning a pre-trained policy to adapt to additional tasks without altering the original task.
A method named Adaptive Policy Gradient (APG) is proposed in this paper, which combines Bellman's principle of optimality with the policy gradient approach to improve the convergence rate.
arXiv Detail & Related papers (2023-05-24T14:31:11Z) - The Role of Baselines in Policy Gradient Optimization [83.42050606055822]
We show that the emphstate value baseline allows on-policy.
emphnatural policy gradient (NPG) to converge to a globally optimal.
policy at an $O (1/t) rate gradient.
We find that the primary effect of the value baseline is to textbfreduce the aggressiveness of the updates rather than their variance.
arXiv Detail & Related papers (2023-01-16T06:28:00Z) - Optimal Estimation of Off-Policy Policy Gradient via Double Fitted
Iteration [39.250754806600135]
Policy (PG) estimation becomes a challenge when we are not allowed to sample with the target policy.
Conventional methods for off-policy PG estimation often suffer from significant bias or exponentially large variance.
In this paper, we propose the double Fitted PG estimation (FPG) algorithm.
arXiv Detail & Related papers (2022-01-31T20:23:52Z) - Understanding the Effect of Stochasticity in Policy Optimization [86.7574122154668]
We show that the preferability of optimization methods depends critically on whether exact gradients are used.
Second, to explain these findings we introduce the concept of committal rate for policy optimization.
Third, we show that in the absence of external oracle information, there is an inherent trade-off between exploiting geometry to accelerate convergence versus achieving optimality almost surely.
arXiv Detail & Related papers (2021-10-29T06:35:44Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation [49.502277468627035]
This paper studies the statistical theory of batch data reinforcement learning with function approximation.
Consider the off-policy evaluation problem, which is to estimate the cumulative value of a new target policy from logged history.
arXiv Detail & Related papers (2020-02-21T19:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.