BERT-ERC: Fine-tuning BERT is Enough for Emotion Recognition in
Conversation
- URL: http://arxiv.org/abs/2301.06745v1
- Date: Tue, 17 Jan 2023 08:03:32 GMT
- Title: BERT-ERC: Fine-tuning BERT is Enough for Emotion Recognition in
Conversation
- Authors: Xiangyu Qin, Zhiyu Wu, Jinshi Cui, Tingting Zhang, Yanran Li, Jian
Luan, Bin Wang, Li Wang
- Abstract summary: Previous works on emotion recognition in conversation (ERC) follow a two-step paradigm.
We propose a novel paradigm, i.e., exploring contextual information and dialogue structure information in the fine-tuning step.
We develop our model BERT-ERC according to the proposed paradigm, which improves ERC performance in three aspects.
- Score: 19.663265448700002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous works on emotion recognition in conversation (ERC) follow a two-step
paradigm, which can be summarized as first producing context-independent
features via fine-tuning pretrained language models (PLMs) and then analyzing
contextual information and dialogue structure information among the extracted
features. However, we discover that this paradigm has several limitations.
Accordingly, we propose a novel paradigm, i.e., exploring contextual
information and dialogue structure information in the fine-tuning step, and
adapting the PLM to the ERC task in terms of input text, classification
structure, and training strategy. Furthermore, we develop our model BERT-ERC
according to the proposed paradigm, which improves ERC performance in three
aspects, namely suggestive text, fine-grained classification module, and
two-stage training. Compared to existing methods, BERT-ERC achieves substantial
improvement on four datasets, indicating its effectiveness and generalization
capability. Besides, we also set up the limited resources scenario and the
online prediction scenario to approximate real-world scenarios. Extensive
experiments demonstrate that the proposed paradigm significantly outperforms
the previous one and can be adapted to various scenes.
Related papers
- Pointer-Guided Pre-Training: Infusing Large Language Models with Paragraph-Level Contextual Awareness [3.2925222641796554]
"pointer-guided segment ordering" (SO) is a novel pre-training technique aimed at enhancing the contextual understanding of paragraph-level text representations.
Our experiments show that pointer-guided pre-training significantly enhances the model's ability to understand complex document structures.
arXiv Detail & Related papers (2024-06-06T15:17:51Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [71.85120354973073]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.
Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)
We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - InstructERC: Reforming Emotion Recognition in Conversation with Multi-task Retrieval-Augmented Large Language Models [9.611864685207056]
We propose a novel approach, InstructERC, to reformulate the emotion recognition task from a discriminative framework to a generative framework based on Large Language Models (LLMs)
InstructERC makes three significant contributions: (1) it introduces a simple yet effective retrieval template module, which helps the model explicitly integrate multi-granularity dialogue supervision information; (2) we introduce two additional emotion alignment tasks, namely speaker identification and emotion prediction tasks, to implicitly model the dialogue role relationships and future emotional tendencies in conversations; and (3) Pioneeringly, we unify emotion labels across benchmarks through the feeling wheel to fit real application scenarios.
arXiv Detail & Related papers (2023-09-21T09:22:07Z) - BERT4CTR: An Efficient Framework to Combine Pre-trained Language Model
with Non-textual Features for CTR Prediction [12.850529317775198]
We propose a novel framework BERT4CTR, with the Uni-Attention mechanism that can benefit from the interactions between non-textual and textual features.
BERT4CTR can outperform significantly the state-of-the-art frameworks to handle multi-modal inputs and be applicable to Click-Through-Rate (CTR) prediction.
arXiv Detail & Related papers (2023-08-17T08:25:54Z) - SSP: Self-Supervised Post-training for Conversational Search [63.28684982954115]
We propose fullmodel (model) which is a new post-training paradigm with three self-supervised tasks to efficiently initialize the conversational search model.
To verify the effectiveness of our proposed method, we apply the conversational encoder post-trained by model on the conversational search task using two benchmark datasets: CAsT-19 and CAsT-20.
arXiv Detail & Related papers (2023-07-02T13:36:36Z) - In-Context Learning for Few-Shot Dialogue State Tracking [55.91832381893181]
We propose an in-context (IC) learning framework for few-shot dialogue state tracking (DST)
A large pre-trained language model (LM) takes a test instance and a few annotated examples as input, and directly decodes the dialogue states without any parameter updates.
This makes the LM more flexible and scalable compared to prior few-shot DST work when adapting to new domains and scenarios.
arXiv Detail & Related papers (2022-03-16T11:58:24Z) - Pre-training Language Model Incorporating Domain-specific Heterogeneous Knowledge into A Unified Representation [49.89831914386982]
We propose a unified pre-trained language model (PLM) for all forms of text, including unstructured text, semi-structured text, and well-structured text.
Our approach outperforms the pre-training of plain text using only 1/4 of the data.
arXiv Detail & Related papers (2021-09-02T16:05:24Z) - Example-Driven Intent Prediction with Observers [15.615065041164629]
We focus on the intent classification problem which aims to identify user intents given utterances addressed to the dialog system.
We propose two approaches for improving the generalizability of utterance classification models: (1) observers and (2) example-driven training.
arXiv Detail & Related papers (2020-10-17T01:03:06Z) - A Tailored Pre-Training Model for Task-Oriented Dialog Generation [60.05269529832447]
We propose a Pre-trained Role Alternating Language model (PRAL) for task-oriented conversational systems.
We introduce a task-oriented dialog pretraining dataset by cleaning 13 existing data sets.
The results show that PRAL performs better or on par with state-of-the-art methods.
arXiv Detail & Related papers (2020-04-24T09:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.