論文の概要: Show me what you want: Inverse reinforcement learning to automatically
design robot swarms by demonstration
- arxiv url: http://arxiv.org/abs/2301.06864v1
- Date: Tue, 17 Jan 2023 13:18:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 14:10:43.619982
- Title: Show me what you want: Inverse reinforcement learning to automatically
design robot swarms by demonstration
- Title(参考訳): ロボット群をデモで自動的にデザインする逆強化学習
- Authors: Ilyes Gharbi, Jonas Kuckling, David Garz\'on Ramos and Mauro Birattari
- Abstract要約: 本稿では,実演を通して所望の集団行動を特定する可能性について検討する。
ロボット群における逆強化学習と制御ソフトウェアの自動モジュール設計を組み合わせた自動設計手法であるDemo-Choを開発した。
- 参考スコア(独自算出の注目度): 0.802904964931021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic design is a promising approach to generating control software for
robot swarms. So far, automatic design has relied on mission-specific objective
functions to specify the desired collective behavior. In this paper, we explore
the possibility to specify the desired collective behavior via demonstrations.
We develop Demo-Cho, an automatic design method that combines inverse
reinforcement learning with automatic modular design of control software for
robot swarms. We show that, only on the basis of demonstrations and without the
need to be provided with an explicit objective function, Demo-Cho successfully
generated control software to perform four missions. We present results
obtained in simulation and with physical robots.
- Abstract(参考訳): 自動設計はロボット群のための制御ソフトウェアを作成するための有望なアプローチである。
これまで自動設計は、望ましい集団行動を特定するためにミッション固有の目的関数に依存してきた。
本稿では,実演を通して望ましい集団行動を特定する可能性を検討する。
ロボット群制御ソフトウェアの自動モジュール設計と逆強化学習を組み合わせた自動設計手法であるDemo-Choを開発した。
デモチョは,実演に基づいてのみ,明示的な客観的機能を備える必要なしに,4つのミッションを行うための制御ソフトウェアの開発に成功した。
シミュレーションと物理ロボットによる実験結果について述べる。
関連論文リスト
- On the Exploration of LM-Based Soft Modular Robot Design [26.847859137653487]
大規模言語モデル(LLM)は、現実世界の知識をモデル化する上で有望な能力を示した。
本稿では,LLMを用いてソフトモジュールロボットの設計を支援する可能性について検討する。
本モデルは,一方向・二方向・階段移動機能を有するソフトモジュールロボットの設計において,優れた評価性能を発揮する。
論文 参考訳(メタデータ) (2024-11-01T04:03:05Z) - Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
我々は,ロボットを視覚のみからモデル化し,制御することを自律的に学習するアーキテクチャであるNeural Jacobian Fieldsを紹介する。
提案手法は,正確なクローズドループ制御を実現し,各ロボットの因果動的構造を復元する。
論文 参考訳(メタデータ) (2024-07-11T17:55:49Z) - DiffGen: Robot Demonstration Generation via Differentiable Physics Simulation, Differentiable Rendering, and Vision-Language Model [72.66465487508556]
DiffGenは、微分可能な物理シミュレーション、微分可能なレンダリング、ビジョン言語モデルを統合する新しいフレームワークである。
言語命令の埋め込みとシミュレートされた観察の埋め込みとの距離を最小化することにより、現実的なロボットデモを生成することができる。
実験によると、DiffGenを使えば、人間の努力やトレーニング時間を最小限に抑えて、ロボットデータを効率よく、効果的に生成できる。
論文 参考訳(メタデータ) (2024-05-12T15:38:17Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Masked World Models for Visual Control [90.13638482124567]
視覚表現学習と動的学習を分離する視覚モデルに基づくRLフレームワークを提案する。
提案手法は,様々な視覚ロボット作業における最先端性能を実現する。
論文 参考訳(メタデータ) (2022-06-28T18:42:27Z) - V-MAO: Generative Modeling for Multi-Arm Manipulation of Articulated
Objects [51.79035249464852]
本稿では,音声による物体のマルチアーム操作を学習するためのフレームワークを提案する。
本フレームワークは,各ロボットアームの剛部上の接触点分布を学習する変動生成モデルを含む。
論文 参考訳(メタデータ) (2021-11-07T02:31:09Z) - myGym: Modular Toolkit for Visuomotor Robotic Tasks [0.0]
myGymは、3Dシミュレータで訓練された強化学習(RL)、本質的な動機付け、模倣学習タスク用に開発された新しい仮想ロボットツールキットです。
シミュレータのモジュラ構造により、ユーザはさまざまなロボット、環境、タスクを使って、多数のシナリオでアルゴリズムをトレーニングし、検証することができる。
このツールキットは、Visuomotorタスク用に事前トレーニングされたビジュアルモジュールを提供し、迅速なプロトタイピングを可能にし、さらに視覚的なサブモジュールをカスタマイズしたり、自身のオブジェクトで再トレーニングすることができる。
論文 参考訳(メタデータ) (2020-12-21T19:15:05Z) - Counterfactual Explanation and Causal Inference in Service of Robustness
in Robot Control [15.104159722499366]
我々は「事象AがCの代わりにBを引き起こすように変更できるか?」という形式の逆実数条件の生成モデルを訓練するためのアーキテクチャを提案する。
従来の制御設計手法とは対照的に、ノイズを除去する能力の観点から頑健さを定量化する手法では、ある要件に違反する可能性のある反事実の空間を探索する。
論文 参考訳(メタデータ) (2020-09-18T14:22:47Z) - Learning a generative model for robot control using visual feedback [7.171234436165255]
本稿では,ロボット制御に視覚フィードバックを取り入れた新しい定式化を提案する。
モデルにおける推論により,特徴のターゲット位置に対応するロボット状態を推測することができる。
本研究では,不正確な制御を行うロボットに対して,握りとタイトな挿入を実行することで,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-03-10T00:34:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。