論文の概要: Holistic Construction Automation with Modular Robots: From High-Level Task Specification to Execution
- arxiv url: http://arxiv.org/abs/2412.20867v1
- Date: Mon, 30 Dec 2024 11:11:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:04:21.344716
- Title: Holistic Construction Automation with Modular Robots: From High-Level Task Specification to Execution
- Title(参考訳): モジュール型ロボットによるホロスティックな建設自動化 -高レベルタスク仕様から実行まで-
- Authors: Jonathan Külz, Michael Terzer, Marco Magri, Andrea Giusti, Matthias Althoff,
- Abstract要約: 建設現場におけるロボットの自動化は、常に変化する環境、ロボット専門家の不足、そしてロボット工学と建設の実践を橋渡しする標準フレームワークの欠如によって困難である。
本研究は, ロボット形態の最適化, 移動モジュール再構成ロボットを用いたミッション実行のための総合的な枠組みを提案する。
- 参考スコア(独自算出の注目度): 7.012962572096341
- License:
- Abstract: In situ robotic automation in construction is challenging due to constantly changing environments, a shortage of robotic experts, and a lack of standardized frameworks bridging robotics and construction practices. This work proposes a holistic framework for construction task specification, optimization of robot morphology, and mission execution using a mobile modular reconfigurable robot. Users can specify and monitor the desired robot behavior through a graphical interface. Our framework identifies an optimized robot morphology and enables automatic real-world execution by integrating Building Information Modelling (BIM). By leveraging modular robot components, we ensure seamless and fast adaption to the specific demands of the construction task. Experimental validation demonstrates that our approach robustly enables the autonomous execution of robotic drilling.
- Abstract(参考訳): 建設現場でのロボットの自動化は、常に変化する環境、ロボット専門家の不足、そしてロボット工学と建設の実践を橋渡しする標準フレームワークの欠如によって困難である。
本研究は, ロボット形態の最適化, 移動モジュール再構成ロボットを用いたミッション実行のための総合的な枠組みを提案する。
ユーザはグラフィカルインターフェースを通じて、望ましいロボットの動作を指定および監視することができる。
本フレームワークは,ロボット形態を最適化し,ビルディング情報モデリング(BIM)を統合した実世界の自動実行を実現する。
モジュール型ロボット部品を活用することにより,建設作業の特定の要求にシームレスかつ迅速に適応できる。
実験により,本手法がロボット掘削の自律的実行を堅牢に実現できることが実証された。
関連論文リスト
- On the Exploration of LM-Based Soft Modular Robot Design [26.847859137653487]
大規模言語モデル(LLM)は、現実世界の知識をモデル化する上で有望な能力を示した。
本稿では,LLMを用いてソフトモジュールロボットの設計を支援する可能性について検討する。
本モデルは,一方向・二方向・階段移動機能を有するソフトモジュールロボットの設計において,優れた評価性能を発揮する。
論文 参考訳(メタデータ) (2024-11-01T04:03:05Z) - Body Transformer: Leveraging Robot Embodiment for Policy Learning [51.531793239586165]
ボディートランスフォーマー(ボディートランスフォーマー、Body Transformer、BoT)は、学習プロセスを導く誘導バイアスを提供することで、ロボットの体現性を活用するアーキテクチャである。
我々はロボットの体をセンサーとアクチュエータのグラフとして表現し、建築全体を通してプール情報にマスキングされた注意を頼りにしている。
結果として得られるアーキテクチャは、バニラ変換器と古典的な多層パーセプトロンを、タスク完了、スケーリング特性、計算効率の点で上回る。
論文 参考訳(メタデータ) (2024-08-12T17:31:28Z) - Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
我々は,ロボットを視覚のみからモデル化し,制御することを自律的に学習するアーキテクチャであるNeural Jacobian Fieldsを紹介する。
提案手法は,正確なクローズドループ制御を実現し,各ロボットの因果動的構造を復元する。
論文 参考訳(メタデータ) (2024-07-11T17:55:49Z) - RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis [102.1876259853457]
汎用ロボット行動合成のための木構造多モードコード生成フレームワークRoboCodeXを提案する。
RoboCodeXは、高レベルの人間の命令を複数のオブジェクト中心の操作ユニットに分解する。
概念的および知覚的理解を制御コマンドにマッピングする能力をさらに強化するため、事前学習のための特別なマルチモーダル推論データセットを収集し、教師付き微調整のための反復的自己更新手法を導入する。
論文 参考訳(メタデータ) (2024-02-25T15:31:43Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - Optimizing Modular Robot Composition: A Lexicographic Genetic Algorithm
Approach [9.471665570104802]
形態学、すなわちロボットの形態と構造は、主要なパフォーマンス指標の取得コスト、サイクル時間、エネルギー効率に大きな影響を及ぼす。
以前のアプローチでは、設計空間の適切な探索や、複雑なタスクに適応する可能性に欠けていた。
本稿では,この問題を克服するために,遺伝的アルゴリズムと解候補の辞書的評価を組み合わせることを提案する。
論文 参考訳(メタデータ) (2023-09-15T13:50:21Z) - Robot-Enabled Construction Assembly with Automated Sequence Planning
based on ChatGPT: RoboGPT [3.4107729935810944]
本稿では,ChatGPTの高度な推論機能を活用した新しいシステムであるRoboGPTを紹介する。
提案システムはChatGPTを構築シーケンス計画に適用し,その実現可能性と有効性を示す。
その結果,RoboGPTを駆動するロボットは複雑な建設作業に対処し,飛行中の変化に適応できることがわかった。
論文 参考訳(メタデータ) (2023-04-21T15:04:41Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z) - Behavior coordination for self-adaptive robots using constraint-based
configuration [0.0]
本稿では,自己適応型ロボットの制御アーキテクチャを動的に構成するアルゴリズムを提案する。
このアルゴリズムは制約に基づく構成アプローチを用いて、反応イベントと熟考イベントの両方に対応して、どの基本的なロボット動作をアクティベートするかを決定する。
このソリューションは、ROSとオープンソースをベースとした、Behavior Coordinator CBCと呼ばれるソフトウェア開発ツールとして実装されている。
論文 参考訳(メタデータ) (2021-03-24T12:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。