Consciousness is learning: predictive processing systems that learn by
binding may perceive themselves as conscious
- URL: http://arxiv.org/abs/2301.07016v2
- Date: Mon, 17 Apr 2023 22:23:05 GMT
- Title: Consciousness is learning: predictive processing systems that learn by
binding may perceive themselves as conscious
- Authors: V.A. Aksyuk
- Abstract summary: We argue that a predictive processing system may flexibly generalize in novel situations by forming working memories for perceptions and actions from single examples.
We describe how the brain could have evolved to use perceptual value prediction for reinforcement learning of complex action policies simultaneously implementing multiple survival and reproduction strategies.
'Conscious experience' is how such a learning system perceptually represents its own functioning, suggesting an answer to the meta problem of consciousness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning algorithms have achieved superhuman performance in specific
complex domains. Yet learning online from few examples and efficiently
generalizing across domains remains elusive. In humans such learning proceeds
via declarative memory formation and is closely associated with consciousness.
Predictive processing has been advanced as a principled Bayesian inference
framework for understanding the cortex as implementing deep generative
perceptual models for both sensory data and action control. However, predictive
processing offers little direct insight into fast compositional learning or the
mystery of consciousness. Here we propose that through implementing online
learning by hierarchical binding of unpredicted inferences, a predictive
processing system may flexibly generalize in novel situations by forming
working memories for perceptions and actions from single examples, which can
become short- and long-term declarative memories retrievable by associative
recall. We argue that the contents of such working memories are unified yet
differentiated, can be maintained by selective attention and are consistent
with observations of masking, postdictive perceptual integration, and other
paradigm cases of consciousness research. We describe how the brain could have
evolved to use perceptual value prediction for reinforcement learning of
complex action policies simultaneously implementing multiple survival and
reproduction strategies. 'Conscious experience' is how such a learning system
perceptually represents its own functioning, suggesting an answer to the meta
problem of consciousness. Our proposal naturally unifies feature binding,
recurrent processing, and predictive processing with global workspace, and, to
a lesser extent, the higher order theories of consciousness.
Related papers
- Memory, Space, and Planning: Multiscale Predictive Representations [5.572701755354684]
Flexible behavior in biological and artificial agents depends on the interplay of learning from the past and predicting the future in ever-changing environments.
This chapter reviews computational, behavioral, and neural evidence suggesting these processes rely on learning the structure of experiences, known as cognitive maps.
arXiv Detail & Related papers (2024-01-16T21:46:43Z) - Learning beyond sensations: how dreams organize neuronal representations [1.749248408967819]
We discuss two complementary learning principles that organize representations through the generation of virtual experiences.
These principles are compatible with known cortical structure and dynamics and the phenomenology of sleep.
arXiv Detail & Related papers (2023-08-03T15:45:12Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Memory-Augmented Theory of Mind Network [59.9781556714202]
Social reasoning requires the capacity of theory of mind (ToM) to contextualise and attribute mental states to others.
Recent machine learning approaches to ToM have demonstrated that we can train the observer to read the past and present behaviours of other agents.
We tackle the challenges by equipping the observer with novel neural memory mechanisms to encode, and hierarchical attention to selectively retrieve information about others.
This results in ToMMY, a theory of mind model that learns to reason while making little assumptions about the underlying mental processes.
arXiv Detail & Related papers (2023-01-17T14:48:58Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - Learning offline: memory replay in biological and artificial
reinforcement learning [1.0136215038345011]
We review the functional roles of replay in the fields of neuroscience and AI.
Replay is important for memory consolidation in biological neural networks.
It is also key to stabilising learning in deep neural networks.
arXiv Detail & Related papers (2021-09-21T08:57:19Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
We study a complementary approach which is conceptually simple, general, modular and built on top of recent improvements in off-policy learning.
The framework is inspired by ideas from the probabilistic inference literature and combines robust off-policy learning with a behavior prior.
Our approach achieves competitive adaptation performance on hold-out tasks compared to meta reinforcement learning baselines and can scale to complex sparse-reward scenarios.
arXiv Detail & Related papers (2020-09-10T14:16:58Z) - Visualizing and Understanding Vision System [0.6510507449705342]
We use a vision recognition-reconstruction network (RRN) to investigate the development, recognition, learning and forgetting mechanisms.
In digit recognition study, we witness that the RRN could maintain object invariance representation under various viewing conditions.
In the learning and forgetting study, novel structure recognition is implemented by adjusting entire synapses in low magnitude while pattern specificities of original synaptic connectivity are preserved.
arXiv Detail & Related papers (2020-06-11T07:08:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.