Cognitively Inspired Learning of Incremental Drifting Concepts
- URL: http://arxiv.org/abs/2110.04662v2
- Date: Fri, 21 Apr 2023 10:35:59 GMT
- Title: Cognitively Inspired Learning of Incremental Drifting Concepts
- Authors: Mohammad Rostami and Aram Galstyan
- Abstract summary: Inspired by the nervous system learning mechanisms, we develop a computational model that enables a deep neural network to learn new concepts.
Our model can generate pseudo-data points for experience replay and accumulate new experiences to past learned experiences without causing cross-task interference.
- Score: 31.3178953771424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans continually expand their learned knowledge to new domains and learn
new concepts without any interference with past learned experiences. In
contrast, machine learning models perform poorly in a continual learning
setting, where input data distribution changes over time. Inspired by the
nervous system learning mechanisms, we develop a computational model that
enables a deep neural network to learn new concepts and expand its learned
knowledge to new domains incrementally in a continual learning setting. We rely
on the Parallel Distributed Processing theory to encode abstract concepts in an
embedding space in terms of a multimodal distribution. This embedding space is
modeled by internal data representations in a hidden network layer. We also
leverage the Complementary Learning Systems theory to equip the model with a
memory mechanism to overcome catastrophic forgetting through implementing
pseudo-rehearsal. Our model can generate pseudo-data points for experience
replay and accumulate new experiences to past learned experiences without
causing cross-task interference.
Related papers
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - A Mathematical Model of the Hidden Feedback Loop Effect in Machine Learning Systems [44.99833362998488]
We introduce a repeated learning process to jointly describe several phenomena attributed to unintended hidden feedback loops.
A distinctive feature of such repeated learning setting is that the state of the environment becomes causally dependent on the learner itself over time.
We present a novel dynamical systems model of the repeated learning process and prove the limiting set of probability distributions for positive and negative feedback loop modes.
arXiv Detail & Related papers (2024-05-04T17:57:24Z) - Demolition and Reinforcement of Memories in Spin-Glass-like Neural
Networks [0.0]
The aim of this thesis is to understand the effectiveness of Unlearning in both associative memory models and generative models.
The selection of structured data enables an associative memory model to retrieve concepts as attractors of a neural dynamics with considerable basins of attraction.
A novel regularization technique for Boltzmann Machines is presented, proving to outperform previously developed methods in learning hidden probability distributions from data-sets.
arXiv Detail & Related papers (2024-03-04T23:12:42Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Negotiated Representations to Prevent Forgetting in Machine Learning
Applications [0.0]
Catastrophic forgetting is a significant challenge in the field of machine learning.
We propose a novel method for preventing catastrophic forgetting in machine learning applications.
arXiv Detail & Related papers (2023-11-30T22:43:50Z) - An effective theory of collective deep learning [1.3812010983144802]
We introduce a minimal model that condenses several recent decentralized algorithms.
We derive an effective theory for linear networks to show that the coarse-grained behavior of our system is equivalent to a deformed Ginzburg-Landau model.
We validate the theory in coupled ensembles of realistic neural networks trained on the MNIST dataset.
arXiv Detail & Related papers (2023-10-19T14:58:20Z) - IF2Net: Innately Forgetting-Free Networks for Continual Learning [49.57495829364827]
Continual learning can incrementally absorb new concepts without interfering with previously learned knowledge.
Motivated by the characteristics of neural networks, we investigated how to design an Innately Forgetting-Free Network (IF2Net)
IF2Net allows a single network to inherently learn unlimited mapping rules without telling task identities at test time.
arXiv Detail & Related papers (2023-06-18T05:26:49Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - A Critical Review of Information Bottleneck Theory and its Applications
to Deep Learning [0.0]
Deep neural networks have seen unparalleled improvements that continue to impact every aspect of today's society.
The information bottleneck theory has emerged as a promising approach to better understand the learning dynamics of neural networks.
The goal of this survey is to provide a comprehensive review of IB theory covering it's information theoretic roots and the recently proposed applications to understand deep learning models.
arXiv Detail & Related papers (2021-05-07T14:16:38Z) - The large learning rate phase of deep learning: the catapult mechanism [50.23041928811575]
We present a class of neural networks with solvable training dynamics.
We find good agreement between our model's predictions and training dynamics in realistic deep learning settings.
We believe our results shed light on characteristics of models trained at different learning rates.
arXiv Detail & Related papers (2020-03-04T17:52:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.