論文の概要: Consciousness is entailed by compositional learning of new causal structures in deep predictive processing systems
- arxiv url: http://arxiv.org/abs/2301.07016v3
- Date: Thu, 07 Nov 2024 22:38:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:53:11.736175
- Title: Consciousness is entailed by compositional learning of new causal structures in deep predictive processing systems
- Title(参考訳): 深部予測処理システムにおける新しい因果構造の構成学習
- Authors: V. A. Aksyuk,
- Abstract要約: 人間では、そのような学習は特定の宣言的記憶形成を含み、意識と密接に関連している。
予測できない推論の階層的バインディングを通じて、オンラインで単例の新たな構造学習を追加することで予測処理を拡張する。
本提案では, 特徴結合, 繰り返し処理, 予測処理, 意識のグローバルな理論を自然に統一する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine learning algorithms have achieved superhuman performance in specific complex domains. However, learning online from few examples and compositional learning for efficient generalization across domains remain elusive. In humans, such learning includes specific declarative memory formation and is closely associated with consciousness. Predictive processing has been advanced as a principled Bayesian framework for understanding the cortex as implementing deep generative models for both sensory perception and action control. However, predictive processing offers little direct insight into fast compositional learning or of the separation between conscious and unconscious contents. Here, propose that access consciousness arises as a consequence of a particular learning mechanism operating within a predictive processing system. We extend predictive processing by adding online, single-example new structure learning via hierarchical binding of unpredicted inferences. This system learns new causes by quickly connecting together novel combinations of perceptions, which manifests as working memories that can become short- and long-term declarative memories retrievable by associative recall. The contents of such bound representations are unified yet differentiated, can be maintained by selective attention and are globally available. The proposed learning process explains contrast and masking manipulations, postdictive perceptual integration, and other paradigm cases of consciousness research. 'Phenomenal conscious experience' is how the learning system transparently models its own functioning, giving rise to perceptual illusions underlying the meta-problem of consciousness. Our proposal naturally unifies the feature binding, recurrent processing, predictive processing, and global workspace theories of consciousness.
- Abstract(参考訳): 機械学習アルゴリズムは、特定の複雑な領域において超人的性能を達成した。
しかし、少数の例からオンラインで学習し、ドメイン間の効率的な一般化のための構成学習はいまだ解明されていない。
人間では、そのような学習は特定の宣言的記憶形成を含み、意識と密接に関連している。
予測処理は、感覚知覚と行動制御の両方のための深い生成モデルを実装するものとして、大脳皮質を理解するための原理化されたベイズ的枠組みとして進歩してきた。
しかし、予測処理は、高速な構成学習や、意識的な内容と無意識的な内容の分離に関する直接的な洞察をほとんど提供しない。
ここでは、予測処理システム内で動作する特定の学習メカニズムの結果として、アクセス意識が生じることを提案する。
予測できない推論の階層的バインディングを通じて、オンラインで単例の新たな構造学習を追加することで予測処理を拡張する。
本システムは,認知の新たな組み合わせを素早く結合することで新たな原因を学習し,連想記憶によって検索可能な短期的・長期的宣言記憶となる作業記憶として現れる。
このような有界表現の内容は統一されるが、区別され、選択的な注意によって維持され、グローバルに利用可能である。
提案した学習プロセスは、コントラストとマスキング操作、予測的知覚統合、その他の意識研究のパラダイムケースを説明する。
「現象意識体験」とは、学習システムが自身の機能を透過的にモデル化し、意識のメタプロブレムの根底にある知覚錯覚を引き起こす方法である。
本提案では,機能バインディング,反復処理,予測処理,グローバルワークスペース理論を自然に統一する。
関連論文リスト
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
本稿では, チャンキングの原理を応用して, 人工神経集団活動の解釈を提案する。
まず、この概念を正則性を持つ人工シーケンスを訓練したリカレントニューラルネットワーク(RNN)で実証する。
我々は、これらの状態に対する摂動が関連する概念を活性化または阻害すると共に、入力における概念に対応する同様の繰り返し埋め込み状態を特定する。
論文 参考訳(メタデータ) (2025-02-03T20:30:46Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - A Study of Biologically Plausible Neural Network: The Role and
Interactions of Brain-Inspired Mechanisms in Continual Learning [13.041607703862724]
人間は絶えず変化する環境から情報を取得し、統合し、保持するのに優れていますが、人工ニューラルネットワーク(ANN)は破滅的な忘れ物を示します。
我々は、デイルの原理に従う排他的および抑制的ニューロンの集団を分離して構成する生物学的に妥当な枠組みを考察する。
次に,脳にインスパイアされた様々なメカニズムの役割と相互作用について包括的研究を行い,その内容は,疎密な非重複表現,ヘビアン学習,シナプス統合,学習イベントに伴う過去の活性化の再現などである。
論文 参考訳(メタデータ) (2023-04-13T16:34:12Z) - Memory-Augmented Theory of Mind Network [59.9781556714202]
社会的推論は、心の理論(ToM)の能力を必要とする。
ToMに対する最近の機械学習アプローチは、観察者が過去を読み、他のエージェントの振る舞いを提示するように訓練できることを実証している。
我々は,新たなニューラルメモリ機構を組み込んで符号化し,階層的な注意を払って他者に関する情報を選択的に検索することで,課題に対処する。
この結果、ToMMYは心的プロセスについての仮定をほとんど行わずに理性を学ぶマインドモデルである。
論文 参考訳(メタデータ) (2023-01-17T14:48:58Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
我々は脳のメタラーニングと連想機構に基づく生涯学習のパラダイムを設計する。
知識の抽出と知識の記憶という2つの側面から問題に取り組む。
提案した学習パラダイムが,異なるタスクのモデルを同じ最適に収束させることができることを理論的に分析した。
論文 参考訳(メタデータ) (2022-08-27T09:27:36Z) - Cognitively Inspired Learning of Incremental Drifting Concepts [31.3178953771424]
神経系学習機構にインスパイアされた我々は、ディープニューラルネットワークが新しい概念を学習することを可能にする計算モデルを開発した。
我々のモデルは、過去の学習経験に新たな経験を蓄積し、タスク間の干渉を引き起こすことなく擬似データポイントを生成することができる。
論文 参考訳(メタデータ) (2021-10-09T23:26:29Z) - Learning offline: memory replay in biological and artificial
reinforcement learning [1.0136215038345011]
神経科学・AI分野におけるリプレイの機能的役割を概観する。
リプレイは生物学的ニューラルネットワークにおけるメモリ統合に重要である。
また、ディープニューラルネットワークにおける学習の安定化の鍵でもある。
論文 参考訳(メタデータ) (2021-09-21T08:57:19Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Visualizing and Understanding Vision System [0.6510507449705342]
視覚認識再構成ネットワーク (RRN) を用いて, 発達, 認識, 学習, 忘れるメカニズムについて検討する。
数値認識研究では、RRNが様々な視聴条件下でオブジェクト不変性表現を維持できるのを目撃する。
学習・忘れ研究において、本来のシナプス接続のパターン特異性を保ちつつ、全シナプスを低等級に調整することで、新規な構造認識を行う。
論文 参考訳(メタデータ) (2020-06-11T07:08:49Z) - Revisit Systematic Generalization via Meaningful Learning [15.90288956294373]
最近の研究は、ニューラルネットワークはそのような認知能力に本質的に効果がないように見えると主張している。
新しい概念と古い概念のセマンティックリンクを条件としたシーケンス・ツー・シーケンス・モデルの合成スキルを再評価する。
論文 参考訳(メタデータ) (2020-03-14T15:27:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。