論文の概要: Computational Pathology for Brain Disorders
- arxiv url: http://arxiv.org/abs/2301.07030v1
- Date: Fri, 13 Jan 2023 14:09:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-18 13:35:24.755006
- Title: Computational Pathology for Brain Disorders
- Title(参考訳): 脳疾患の計算病理
- Authors: Gabriel Jimenez and Daniel Racoceanu
- Abstract要約: この章は、脳障害のコンテキスト内でスライド画像全体を分析するために使用される最先端の機械学習技術を理解することに焦点を当てている。
我々は、識別的アプローチと脳障害に対する品質結果を提供する、注目すべき機械学習アルゴリズムの選択的セットを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-invasive brain imaging techniques allow understanding the behavior and
macro changes in the brain to determine the progress of a disease. However,
computational pathology provides a deeper understanding of brain disorders at
cellular level, able to consolidate a diagnosis and make the bridge between the
medical image and the omics analysis. In traditional histopathology, histology
slides are visually inspected, under the microscope, by trained pathologists.
This process is time-consuming and labor-intensive; therefore, the emergence of
Computational Pathology has triggered great hope to ease this tedious task and
make it more robust. This chapter focuses on understanding the state-of-the-art
machine learning techniques used to analyze whole slide images within the
context of brain disorders. We present a selective set of remarkable machine
learning algorithms providing discriminative approaches and quality results on
brain disorders. These methodologies are applied to different tasks, such as
monitoring mechanisms contributing to disease progression and patient survival
rates, analyzing morphological phenotypes for classification and quantitative
assessment of disease, improving clinical care, diagnosing tumor specimens, and
intraoperative interpretation. Thanks to the recent progress in machine
learning algorithms for high-content image processing, computational pathology
marks the rise of a new generation of medical discoveries and clinical
protocols, including in brain disorders.
- Abstract(参考訳): 非侵襲的脳イメージング技術により、脳の挙動や大まかな変化を理解し、疾患の進行を判断することができる。
しかし、計算病理学は脳障害を細胞レベルでより深く理解し、診断を統合し、医用画像とオミクス分析の間の橋渡しを行うことができる。
伝統的な病理学では、組織学のスライドは顕微鏡の下で、訓練された病理学者によって視覚的に検査される。
このプロセスは時間がかかり、労働集約的であるため、計算病理学の出現は、この退屈なタスクを楽にし、より堅牢にするための大きな希望をもたらした。
本章は、脳障害の文脈におけるスライド画像全体の分析に使用される最先端の機械学習技術を理解することに焦点を当てる。
脳障害に対する識別的アプローチと品質結果を提供する、注目すべき機械学習アルゴリズムの選択的セットを提案する。
これらの方法は、疾患の進行と患者の生存率に寄与するモニタリングメカニズム、疾患の分類と定量的評価のための形態学的表現型の分析、臨床治療の改善、腫瘍標本の診断、術中解釈など、様々なタスクに適用される。
高度な画像処理のための機械学習アルゴリズムの最近の進歩のおかげで、計算病理学は脳疾患を含む新しい世代の医学的発見と臨床プロトコルの台頭を示している。
関連論文リスト
- Adversarial Neural Networks in Medical Imaging Advancements and Challenges in Semantic Segmentation [6.88255677115486]
人工知能(AI)の最近の進歩は、医療画像のパラダイムシフトを引き起こしている。
本稿では,脳画像のセマンティックセグメンテーションへの深層学習(AIの主分野)の統合を体系的に検討する。
敵対的ニューラルネットワークは、自動化するだけでなく、セマンティックセグメンテーションプロセスを洗練する、新しいAIアプローチである。
論文 参考訳(メタデータ) (2024-10-17T00:05:05Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Recent advancement in Disease Diagnostic using machine learning:
Systematic survey of decades, comparisons, and challenges [0.0]
バイオメディカル領域におけるパターン認識と機械学習は、疾患の検出と診断の精度を高めることを約束する。
本稿では,肝炎,糖尿病,肝疾患,デング熱,心臓病などの疾患を検出するための機械学習アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2023-07-31T16:35:35Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - A review of machine learning approaches, challenges and prospects for
computational tumor pathology [1.2036642553849346]
腫瘍計算病理学は、データ統合、ハードウェア処理、ネットワーク共有帯域幅、機械学習技術に挑戦する。
本稿では,病的・技術的観点から,計算病理学における前処理手法について検討する。
計算病理学応用における機械学習の課題と展望について論じる。
論文 参考訳(メタデータ) (2022-05-31T14:56:01Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - Machine Learning Applications on Neuroimaging for Diagnosis and
Prognosis of Epilepsy: A Review [6.185653026582807]
てんかんの診断と予後の文脈におけるニューロイメージングと機械学習の相互作用を強調した。
本稿では,2段階構成法とエンドツーエンド法という2つの手法を用いて,ニューロイメージングデータに機械学習手法を適用する。
セグメンテーション、ローカライゼーション、横方向化タスクなど、てんかん性画像における機械学習タスクの詳細なレビューを行う。
論文 参考訳(メタデータ) (2021-02-05T18:39:12Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z) - Deep neural network models for computational histopathology: A survey [1.2891210250935146]
深層学習は がん組織像の分析と解釈において 主流の方法論選択となりました
本稿では,現在使われている最先端の深層学習手法について概説する。
私たちは、現在のディープラーニングアプローチにおける重要な課題と制限と、将来の研究への道のりを強調します。
論文 参考訳(メタデータ) (2019-12-28T01:04:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。