論文の概要: Adversarial Neural Networks in Medical Imaging Advancements and Challenges in Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2410.13099v1
- Date: Thu, 17 Oct 2024 00:05:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:18:30.818910
- Title: Adversarial Neural Networks in Medical Imaging Advancements and Challenges in Semantic Segmentation
- Title(参考訳): 医用画像における対立ニューラルネットワークとセマンティックセグメンテーションの課題
- Authors: Houze Liu, Bo Zhang, Yanlin Xiang, Yuxiang Hu, Aoran Shen, Yang Lin,
- Abstract要約: 人工知能(AI)の最近の進歩は、医療画像のパラダイムシフトを引き起こしている。
本稿では,脳画像のセマンティックセグメンテーションへの深層学習(AIの主分野)の統合を体系的に検討する。
敵対的ニューラルネットワークは、自動化するだけでなく、セマンティックセグメンテーションプロセスを洗練する、新しいAIアプローチである。
- 参考スコア(独自算出の注目度): 6.88255677115486
- License:
- Abstract: Recent advancements in artificial intelligence (AI) have precipitated a paradigm shift in medical imaging, particularly revolutionizing the domain of brain imaging. This paper systematically investigates the integration of deep learning -- a principal branch of AI -- into the semantic segmentation of brain images. Semantic segmentation serves as an indispensable technique for the delineation of discrete anatomical structures and the identification of pathological markers, essential for the diagnosis of complex neurological disorders. Historically, the reliance on manual interpretation by radiologists, while noteworthy for its accuracy, is plagued by inherent subjectivity and inter-observer variability. This limitation becomes more pronounced with the exponential increase in imaging data, which traditional methods struggle to process efficiently and effectively. In response to these challenges, this study introduces the application of adversarial neural networks, a novel AI approach that not only automates but also refines the semantic segmentation process. By leveraging these advanced neural networks, our approach enhances the precision of diagnostic outputs, reducing human error and increasing the throughput of imaging data analysis. The paper provides a detailed discussion on how adversarial neural networks facilitate a more robust, objective, and scalable solution, thereby significantly improving diagnostic accuracies in neurological evaluations. This exploration highlights the transformative impact of AI on medical imaging, setting a new benchmark for future research and clinical practice in neurology.
- Abstract(参考訳): 人工知能(AI)の最近の進歩は、医療画像のパラダイムシフト、特に脳画像の領域に革命をもたらした。
本稿では,脳画像のセマンティックセグメンテーションへの深層学習(AIの主分野)の統合を体系的に検討する。
セマンティックセグメンテーション(Semantic segmentation)は、複雑な神経疾患の診断に欠かせない、個々の解剖学的構造や病理マーカーの同定に欠かせない手法である。
歴史的に、放射線学者による手動解釈への依存は、その正確さに特筆に値するが、固有の主観性とサーバ間変動に悩まされている。
この制限は、従来の手法が効率的かつ効果的に処理するのに苦労する画像データの指数的な増加と共により顕著になる。
これらの課題に応えて、本研究では、セマンティックセグメンテーションプロセスを自動化するだけでなく、洗練されたAIアプローチである、対向ニューラルネットワークの適用について紹介する。
これらの高度なニューラルネットワークを利用することで、診断出力の精度を高め、ヒューマンエラーを低減し、画像データ解析のスループットを向上する。
本論文は, 対戦型ニューラルネットワークがより堅牢で客観的でスケーラブルなソリューションをどのように促進し, 神経学的評価における診断精度を大幅に向上させるかについて, 詳細な議論をおこなった。
この調査は、医療画像に対するAIの変革的影響を強調し、神経学における将来の研究と臨床実践のための新しいベンチマークを設定している。
関連論文リスト
- Enhance the Image: Super Resolution using Artificial Intelligence in MRI [10.00462384555522]
本章では,MRIの空間分解能向上のためのディープラーニング技術の概要を紹介する。
深層学習に基づくMRI超解像の実現可能性と信頼性に関する課題と今後の展望について論じる。
論文 参考訳(メタデータ) (2024-06-19T15:19:41Z) - Exploring the Role of Convolutional Neural Networks (CNN) in Dental
Radiography Segmentation: A Comprehensive Systematic Literature Review [1.342834401139078]
この研究は、画像解析にCNN(Convolutional Neural Networks)を用いることで、歯科疾患の検出に有効なツールであることを示す。
CNNは歯のセグメンテーションと分類に利用し、全体として最高のパフォーマンスを示した。
論文 参考訳(メタデータ) (2024-01-17T13:00:57Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Computational Pathology for Brain Disorders [0.0]
この章は、脳障害のコンテキスト内でスライド画像全体を分析するために使用される最先端の機械学習技術を理解することに焦点を当てている。
我々は、識別的アプローチと脳障害に対する品質結果を提供する、注目すべき機械学習アルゴリズムの選択的セットを提案する。
論文 参考訳(メタデータ) (2023-01-13T14:09:02Z) - Explainable Artificial Intelligence in Retinal Imaging for the detection
of Systemic Diseases [0.0]
本研究では,Deep Convolutional Neural Networks(CNN)を直接使用せずに,説明可能な段階的な段階付けプロセスを評価することを目的とする。
我々は,眼底画像の網膜血管評価を行うクリニアン・イン・ザ・ループ支援インテリジェントワークフローを提案する。
半自動的な方法論は、臨床医からのより多くのインプットと解釈を持つ医療アプリケーションにおいて、AIに対する連合的なアプローチを持つことを目的としている。
論文 参考訳(メタデータ) (2022-12-14T07:00:31Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Ensembling complex network 'perspectives' for mild cognitive impairment
detection with artificial neural networks [5.194561180498554]
本研究では,複合ネットワークとニューラルネットワークのパラダイムを共同利用した軽度の認知障害検出手法を提案する。
特に、この手法は、異なる脳構造「パースペクティブ」を人工ニューラルネットワークでアンサンブルすることに基づいている。
論文 参考訳(メタデータ) (2021-01-26T08:38:11Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。