On Using Deep Learning Proxies as Forward Models in Deep Learning
Problems
- URL: http://arxiv.org/abs/2301.07102v1
- Date: Mon, 16 Jan 2023 04:54:12 GMT
- Title: On Using Deep Learning Proxies as Forward Models in Deep Learning
Problems
- Authors: Fatima Albreiki, Nidhal Belayouni and Deepak K. Gupta
- Abstract summary: Recent works have demonstrated that physics-modelling can be approximated with neural networks.
We demonstrate that neural network approximations (NN-proxies) of such functions can lead to erroneous results.
In particular, we study the behavior of particle swarm optimization and genetic algorithm methods.
- Score: 5.478764356647437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-based optimization problems are generally very time-consuming,
especially due to the computational complexity associated with the forward
model. Recent works have demonstrated that physics-modelling can be
approximated with neural networks. However, there is always a certain degree of
error associated with this learning, and we study this aspect in this paper. We
demonstrate through experiments on popular mathematical benchmarks, that neural
network approximations (NN-proxies) of such functions when plugged into the
optimization framework, can lead to erroneous results. In particular, we study
the behavior of particle swarm optimization and genetic algorithm methods and
analyze their stability when coupled with NN-proxies. The correctness of the
approximate model depends on the extent of sampling conducted in the parameter
space, and through numerical experiments, we demonstrate that caution needs to
be taken when constructing this landscape with neural networks. Further, the
NN-proxies are hard to train for higher dimensional functions, and we present
our insights for 4D and 10D problems. The error is higher for such cases, and
we demonstrate that it is sensitive to the choice of the sampling scheme used
to build the NN-proxy. The code is available at
https://github.com/Fa-ti-ma/NN-proxy-in-optimization.
Related papers
- The Unreasonable Effectiveness of Solving Inverse Problems with Neural Networks [24.766470360665647]
We show that neural networks trained to learn solutions to inverse problems can find better solutions than classicals even on their training set.
Our findings suggest an alternative use for neural networks: rather than generalizing to new data for fast inference, they can also be used to find better solutions on known data.
arXiv Detail & Related papers (2024-08-15T12:38:10Z) - SGD method for entropy error function with smoothing l0 regularization for neural networks [3.108634881604788]
entropy error function has been widely used in neural networks.
We propose a novel entropy function with smoothing l0 regularization for feed-forward neural networks.
Our work is novel as it enables neural networks to learn effectively, producing more accurate predictions.
arXiv Detail & Related papers (2024-05-28T19:54:26Z) - Spectral-Refiner: Fine-Tuning of Accurate Spatiotemporal Neural Operator for Turbulent Flows [6.961408873053586]
We propose a new Stemporal Neural Operator (SFNO) that learns maps between Bochner spaces, and a new learning framework to address these issues.
This new paradigm leverages wisdom from traditional numerical PDE theory and techniques to refine the pipeline of commonly adopted end-to-end neural operator training and evaluations.
Numerical experiments on commonly used benchmarks for the 2D NSE demonstrate significant improvements in both computational efficiency and accuracy, compared to end-to-end evaluation and traditional numerical PDE solvers.
arXiv Detail & Related papers (2024-05-27T14:33:06Z) - Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks [0.5827521884806072]
Large neural networks trained on large datasets have become the dominant paradigm in machine learning.
This thesis develops scalable methods to equip neural networks with model uncertainty.
arXiv Detail & Related papers (2024-04-29T23:38:58Z) - Precision Machine Learning [5.15188009671301]
We compare various function approximation methods and study how they scale with increasing parameters and data.
We find that neural networks can often outperform classical approximation methods on high-dimensional examples.
We develop training tricks which enable us to train neural networks to extremely low loss, close to the limits allowed by numerical precision.
arXiv Detail & Related papers (2022-10-24T17:58:30Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.