Scaffold-Based Multi-Objective Drug Candidate Optimization
- URL: http://arxiv.org/abs/2301.07175v2
- Date: Tue, 2 Jan 2024 12:49:36 GMT
- Title: Scaffold-Based Multi-Objective Drug Candidate Optimization
- Authors: Agustin Kruel, Andrew D. McNaughton, Neeraj Kumar
- Abstract summary: We introduce a scaffold focused graph-based Markov chain Monte Carlo framework to generate molecules with optimal properties.
ScaMARS has a diversity score of 84.6% and has a much higher success rate of 99.5% compared to conditional models.
- Score: 9.53584200550524
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In therapeutic design, balancing various physiochemical properties is crucial
for molecule development, similar to how Multiparameter Optimization (MPO)
evaluates multiple variables to meet a primary goal. While many molecular
features can now be predicted using \textit{in silico} methods, aiding early
drug development, the vast data generated from high throughput virtual
screening challenges the practicality of traditional MPO approaches. Addressing
this, we introduce a scaffold focused graph-based Markov chain Monte Carlo
framework (ScaMARS) built to generate molecules with optimal properties. This
innovative framework is capable of self-training and handling a wider array of
properties, sampling different chemical spaces according to the starting
scaffold. The benchmark analysis on several properties shows that ScaMARS has a
diversity score of 84.6\% and has a much higher success rate of 99.5\% compared
to conditional models. The integration of new features into MPO significantly
enhances its adaptability and effectiveness in therapeutic design, facilitating
the discovery of candidates that efficiently optimize multiple properties.
Related papers
- DrugImproverGPT: A Large Language Model for Drug Optimization with Fine-Tuning via Structured Policy Optimization [53.27954325490941]
Finetuning a Large Language Model (LLM) is crucial for generating results towards specific objectives.
This research introduces a novel reinforcement learning algorithm to finetune a drug optimization LLM-based generative model.
arXiv Detail & Related papers (2025-02-11T04:00:21Z) - XMOL: Explainable Multi-property Optimization of Molecules [2.320539066224081]
We propose Explainable Multi-property Optimization of Molecules (XMOL) to optimize multiple molecular properties simultaneously.
Our approach builds on state-of-the-art geometric diffusion models, extending them to multi-property optimization.
We integrate interpretive and explainable techniques throughout the optimization process.
arXiv Detail & Related papers (2024-09-12T06:35:04Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - Latent Chemical Space Searching for Plug-in Multi-objective Molecule Generation [9.442146563809953]
We develop a versatile 'plug-in' molecular generation model that incorporates objectives related to target affinity, drug-likeness, and synthesizability.
We identify PSO-ENP as the optimal variant for multi-objective molecular generation and optimization.
arXiv Detail & Related papers (2024-04-10T02:37:24Z) - Objective-Agnostic Enhancement of Molecule Properties via Multi-Stage
VAE [1.3597551064547502]
Variational autoencoder (VAE) is a popular method for drug discovery and various architectures and pipelines have been proposed to improve its performance.
VAE approaches are known to suffer from poor manifold recovery when the data lie on a low-dimensional manifold embedded in a higher dimensional ambient space.
In this paper, we explore applying a multi-stage VAE approach, that can improve manifold recovery on a synthetic dataset, to the field of drug discovery.
arXiv Detail & Related papers (2023-08-24T20:22:22Z) - Machine Learning Small Molecule Properties in Drug Discovery [44.62264781248437]
We review a wide range of properties, including binding affinities, solubility, and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity)
We discuss existing popular descriptors and embeddings, such as chemical fingerprints and graph-based neural networks.
Finally, techniques to provide an understanding of model predictions, especially for critical decision-making in drug discovery are assessed.
arXiv Detail & Related papers (2023-08-02T22:18:41Z) - Beyond Chemical Language: A Multimodal Approach to Enhance Molecular
Property Prediction [2.1202329976106924]
We present a novel multimodal language model approach for predicting molecular properties by combining chemical language representation with physicochemical features.
Our approach, MULTIMODAL-MOLFORMER, utilizes a causal multistage feature selection method that identifies physicochemical features based on their direct causal effect on a specific target property.
Our results demonstrate a superior performance compared to existing state-of-the-art algorithms, including the chemical language-based MOLFORMER and graph neural networks.
arXiv Detail & Related papers (2023-06-22T13:28:59Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
We propose QMO, a generic query-based molecule optimization framework.
QMO improves the desired properties of an input molecule based on efficient queries.
We show that QMO outperforms existing methods in the benchmark tasks of optimizing small organic molecules.
arXiv Detail & Related papers (2020-11-03T18:51:18Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties.
We propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution.
arXiv Detail & Related papers (2020-10-05T20:18:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.