A quantum-classical decomposition of Gaussian quantum environments: a
stochastic pseudomode model
- URL: http://arxiv.org/abs/2301.07554v2
- Date: Thu, 15 Jun 2023 01:08:52 GMT
- Title: A quantum-classical decomposition of Gaussian quantum environments: a
stochastic pseudomode model
- Authors: Si Luo, Neill Lambert, Pengfei Liang, Mauro Cirio
- Abstract summary: We show that the effect of a Bosonic environment linearly coupled to a quantum system can be simulated by a Gaussian Lindblad master equation.
For a subset of rational spectral densities, all parameters are explicitly specified without the need of any fitting procedure.
- Score: 0.8258451067861933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that the effect of a Gaussian Bosonic environment linearly coupled to
a quantum system can be simulated by a stochastic Lindblad master equation
characterized by a set of ancillary Bosonic modes initially at zero temperature
and classical stochastic fields. We test the method for Ohmic environments with
exponential and polynomial cut-offs against, respectively, the Hierarchical
Equations of Motion and the deterministic pseudomode model with respect to
which the number of ancillary quantum degrees of freedom is reduced. For a
subset of rational spectral densities, all parameters are explicitly specified
without the need of any fitting procedure, thereby simplifying the modeling
strategy. Interestingly, the classical fields in this decomposition must
sometimes be imaginary-valued, which can have counter-intuitive effects on the
system properties which we demonstrate by showing that they can decrease the
entropy of the system, in contrast to real-valued fields.
Related papers
- Simulating continuous-space systems with quantum-classical wave functions [0.0]
Non-relativistic interacting quantum many-body systems are naturally described in terms of continuous-space Hamiltonians.
Current algorithms require discretization, which usually amounts to choosing a finite basis set, inevitably introducing errors.
We propose an alternative, discretization-free approach that combines classical and quantum resources in a global variational ansatz.
arXiv Detail & Related papers (2024-09-10T10:54:59Z) - Modeling Stochastic Chemical Kinetics on Quantum Computers [0.0]
We show how quantum algorithms can be employed to model chemical kinetics using the Schl"ogl Model of a trimolecular reaction network.
Our quantum computed results from both noisy and noiseless quantum simulations agree within a few percent with the classically computed eigenvalues and zeromode.
arXiv Detail & Related papers (2024-04-12T18:53:38Z) - Non-Hermitian Pseudomodes for Strongly Coupled Open Quantum Systems: Unravelings, Correlations and Thermodynamics [0.0]
Pseudomode framework provides an exact description of the dynamics of an open quantum system coupled to a non-Markovian environment.
We show that our approach decreases the number of pseudomodes that are required to model, for example, underdamped environments at finite temperature.
arXiv Detail & Related papers (2024-01-22T10:41:43Z) - Variational Quantum Simulation of Partial Differential Equations:
Applications in Colloidal Transport [0.0]
We show that real-amplitude ansaetze with full circular entangling layers lead to higher-fidelity solutions.
To efficiently encode impulse functions, we propose a graphical mapping technique for quantum states.
arXiv Detail & Related papers (2023-07-14T05:51:57Z) - Signatures of a quantum phase transition on a single-mode bosonic model [0.0]
Equilibrium phase transitions emerge from the microscopic behavior of many-body systems.
They can be defined through the non-analytic behavior of thermodynamic potentials in the thermodynamic limit.
Taking previous ideas to the extreme, we argue that such a limit can be defined even in non-extended systems.
arXiv Detail & Related papers (2023-03-22T20:14:45Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.