Targeted Image Reconstruction by Sampling Pre-trained Diffusion Model
- URL: http://arxiv.org/abs/2301.07557v1
- Date: Wed, 18 Jan 2023 14:21:38 GMT
- Title: Targeted Image Reconstruction by Sampling Pre-trained Diffusion Model
- Authors: Jiageng Zheng
- Abstract summary: A trained neural network model contains information on the training data.
Malicious parties can leverage the "knowledge" in this model and design ways to print out any usable information.
In this work, we proposed ways to generate a data point of the target class without prior knowledge of the exact target distribution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A trained neural network model contains information on the training data.
Given such a model, malicious parties can leverage the "knowledge" in this
model and design ways to print out any usable information (known as model
inversion attack). Therefore, it is valuable to explore the ways to conduct a
such attack and demonstrate its severity. In this work, we proposed ways to
generate a data point of the target class without prior knowledge of the exact
target distribution by using a pre-trained diffusion model.
Related papers
- Training Data Attribution: Was Your Model Secretly Trained On Data Created By Mine? [17.714589429503675]
We propose an injection-free training data attribution method for text-to-image models.
Our approach involves developing algorithms to uncover distinct samples and using them as inherent watermarks.
Our experiments demonstrate that our method achieves an accuracy of over 80% in identifying the source of a suspicious model's training data.
arXiv Detail & Related papers (2024-09-24T06:23:43Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
Diffusion models trained on large datasets can synthesize photo-realistic images of remarkable quality and diversity.
We propose a framework that: (i) provides a formal notion of data attribution in the context of diffusion models, and (ii) allows us to counterfactually validate such attributions.
arXiv Detail & Related papers (2023-12-11T08:39:43Z) - Transpose Attack: Stealing Datasets with Bidirectional Training [4.166238443183223]
We show that adversaries can exfiltrate datasets from protected learning environments under the guise of legitimate models.
We propose a novel approach for detecting infected models.
arXiv Detail & Related papers (2023-11-13T15:14:50Z) - Tools for Verifying Neural Models' Training Data [29.322899317216407]
"Proof-of-Training-Data" allows a model trainer to convince a Verifier of the training data that produced a set of model weights.
We show experimentally that our verification procedures can catch a wide variety of attacks.
arXiv Detail & Related papers (2023-07-02T23:27:00Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Hub-Pathway: Transfer Learning from A Hub of Pre-trained Models [89.44031286278347]
We propose a Hub-Pathway framework to enable knowledge transfer from a model hub.
The proposed framework can be trained end-to-end with the target task-specific loss.
Experiment results on computer vision and reinforcement learning tasks demonstrate that the framework achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-06-08T08:00:12Z) - Delving into Data: Effectively Substitute Training for Black-box Attack [84.85798059317963]
We propose a novel perspective substitute training that focuses on designing the distribution of data used in the knowledge stealing process.
The combination of these two modules can further boost the consistency of the substitute model and target model, which greatly improves the effectiveness of adversarial attack.
arXiv Detail & Related papers (2021-04-26T07:26:29Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.