Learning to Weight Parameters for Data Attribution
- URL: http://arxiv.org/abs/2506.05647v1
- Date: Fri, 06 Jun 2025 00:32:04 GMT
- Title: Learning to Weight Parameters for Data Attribution
- Authors: Shuangqi Li, Hieu Le, Jingyi Xu, Mathieu Salzmann,
- Abstract summary: We study data attribution in generative models, aiming to identify which training examples most influence a given output.<n>We propose a method that models this by learning parameter importance weights tailored for attribution, without requiring labeled data.
- Score: 63.753710512888965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study data attribution in generative models, aiming to identify which training examples most influence a given output. Existing methods achieve this by tracing gradients back to training data. However, they typically treat all network parameters uniformly, ignoring the fact that different layers encode different types of information and may thus draw information differently from the training set. We propose a method that models this by learning parameter importance weights tailored for attribution, without requiring labeled data. This allows the attribution process to adapt to the structure of the model, capturing which training examples contribute to specific semantic aspects of an output, such as subject, style, or background. Our method improves attribution accuracy across diffusion models and enables fine-grained insights into how outputs borrow from training data.
Related papers
- Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
We formalize the concept of trajectory-specific leave-one-out influence, which quantifies the impact of removing a data point during training.<n>We propose data value embedding, a novel technique enabling efficient approximation of trajectory-specific LOO.<n>As data value embedding captures training data ordering, it offers valuable insights into model training dynamics.
arXiv Detail & Related papers (2024-12-12T18:28:55Z) - How Does Data Diversity Shape the Weight Landscape of Neural Networks? [2.89287673224661]
We investigate the impact of dropout, weight decay, and noise augmentation on the parameter space of neural networks.
We observe that diverse data influences the weight landscape in a similar fashion as dropout.
We conclude that synthetic data can bring more diversity into real input data, resulting in a better performance on out-of-distribution test instances.
arXiv Detail & Related papers (2024-10-18T16:57:05Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.<n>Yet their widespread adoption poses challenges regarding data attribution and interpretability.<n>We develop an influence functions framework to address these challenges.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
Diffusion models trained on large datasets can synthesize photo-realistic images of remarkable quality and diversity.
We propose a framework that: (i) provides a formal notion of data attribution in the context of diffusion models, and (ii) allows us to counterfactually validate such attributions.
arXiv Detail & Related papers (2023-12-11T08:39:43Z) - Tools for Verifying Neural Models' Training Data [29.322899317216407]
"Proof-of-Training-Data" allows a model trainer to convince a Verifier of the training data that produced a set of model weights.
We show experimentally that our verification procedures can catch a wide variety of attacks.
arXiv Detail & Related papers (2023-07-02T23:27:00Z) - Training Data Attribution for Diffusion Models [1.1733780065300188]
We propose a novel solution that reveals how training data influence the output of diffusion models through the use of ensembles.
In our approach individual models in an encoded ensemble are trained on carefully engineered splits of the overall training data to permit the identification of influential training examples.
The resulting model ensembles enable efficient ablation of training data influence, allowing us to assess the impact of training data on model outputs.
arXiv Detail & Related papers (2023-06-03T18:36:12Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
We present TRAK (Tracing with Randomly-trained After Kernel), a data attribution method that is both effective and computationally tractable for large-scale, differenti models.
arXiv Detail & Related papers (2023-03-24T17:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.