A Survey of Advanced Computer Vision Techniques for Sports
- URL: http://arxiv.org/abs/2301.07583v1
- Date: Wed, 18 Jan 2023 15:01:36 GMT
- Title: A Survey of Advanced Computer Vision Techniques for Sports
- Authors: Tiago Mendes-Neves, Lu\'is Meireles, Jo\~ao Mendes-Moreira
- Abstract summary: We build a model for shot speed estimation with pose data obtained using only Computer Vision models.
The proposed methodology is easily replicable for many technical movements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer Vision developments are enabling significant advances in many
fields, including sports. Many applications built on top of Computer Vision
technologies, such as tracking data, are nowadays essential for every top-level
analyst, coach, and even player. In this paper, we survey Computer Vision
techniques that can help many sports-related studies gather vast amounts of
data, such as Object Detection and Pose Estimation. We provide a use case for
such data: building a model for shot speed estimation with pose data obtained
using only Computer Vision models. Our model achieves a correlation of 67%. The
possibility of estimating shot speeds enables much deeper studies about
enabling the creation of new metrics and recommendation systems that will help
athletes improve their performance, in any sport. The proposed methodology is
easily replicable for many technical movements and is only limited by the
availability of video data.
Related papers
- Towards Active Learning for Action Spotting in Association Football
Videos [59.84375958757395]
Analyzing football videos is challenging and requires identifying subtle and diverse-temporal patterns.
Current algorithms face significant challenges when learning from limited annotated data.
We propose an active learning framework that selects the most informative video samples to be annotated next.
arXiv Detail & Related papers (2023-04-09T11:50:41Z) - Unifying Tracking and Image-Video Object Detection [54.91658924277527]
TrIVD (Tracking and Image-Video Detection) is the first framework that unifies image OD, video OD, and MOT within one end-to-end model.
To handle the discrepancies and semantic overlaps of category labels, TrIVD formulates detection/tracking as grounding and reasons about object categories.
arXiv Detail & Related papers (2022-11-20T20:30:28Z) - DeepSportradar-v1: Computer Vision Dataset for Sports Understanding with
High Quality Annotations [3.000319651350124]
This paper introduces DeepSportradar-v1, a suite of computer vision tasks, datasets and benchmarks for automated sport understanding.
The main purpose of this framework is to close the gap between academic research and real world settings.
arXiv Detail & Related papers (2022-08-17T09:55:02Z) - Sports Video Analysis on Large-Scale Data [10.24207108909385]
This paper investigates the modeling of automated machine description on sports video.
We propose a novel large-scale NBA dataset for Sports Video Analysis (NSVA) with a focus on captioning.
arXiv Detail & Related papers (2022-08-09T16:59:24Z) - A Survey on Video Action Recognition in Sports: Datasets, Methods and
Applications [60.3327085463545]
We present a survey on video action recognition for sports analytics.
We introduce more than ten types of sports, including team sports, such as football, basketball, volleyball, hockey and individual sports, such as figure skating, gymnastics, table tennis, diving and badminton.
We develop a toolbox using PaddlePaddle, which supports football, basketball, table tennis and figure skating action recognition.
arXiv Detail & Related papers (2022-06-02T13:19:36Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
We propose a novel dataset for multiple object tracking composed of 200 sequences of 30s each.
The dataset is fully annotated with bounding boxes and tracklet IDs.
Our analysis shows that multiple player, referee and ball tracking in soccer videos is far from being solved.
arXiv Detail & Related papers (2022-04-14T12:22:12Z) - Optical tracking in team sports [0.0]
We provide a basic understanding for quantitative data analysts about the process of creating the input data.
We discuss the preprocessing steps of tracking, the most common challenges in this domain, and the application of tracking data to sports teams.
arXiv Detail & Related papers (2022-04-08T15:51:35Z) - Muscle Vision: Real Time Keypoint Based Pose Classification of Physical
Exercises [52.77024349608834]
3D human pose recognition extrapolated from video has advanced to the point of enabling real-time software applications.
We propose a new machine learning pipeline and web interface that performs human pose recognition on a live video feed to detect when common exercises are performed and classify them accordingly.
arXiv Detail & Related papers (2022-03-23T00:55:07Z) - A Comprehensive Review of Computer Vision in Sports: Open Issues, Future
Trends and Research Directions [3.138976077182707]
This paper presents a review of sports video analysis for various applications high-level analysis.
It includes detection and classification of players, tracking player or ball in sports, predicting the trajectories of player or ball, recognizing the teams strategies, classifying various events in sports.
arXiv Detail & Related papers (2022-03-03T07:49:21Z) - Game Plan: What AI can do for Football, and What Football can do for AI [83.79507996785838]
Predictive and prescriptive football analytics require new developments and progress at the intersection of statistical learning, game theory, and computer vision.
We illustrate that football analytics is a game changer of tremendous value, in terms of not only changing the game of football itself, but also in terms of what this domain can mean for the field of AI.
arXiv Detail & Related papers (2020-11-18T10:26:02Z) - Challenges and Opportunities for Computer Vision in Real-life Soccer
Analytics [6.144873990390373]
Sport analytics deals with understanding and discovering patterns from a corpus of sports data.
This paper mainly focuses on some the challenges and opportunities presented by sport video analysis in computer vision.
arXiv Detail & Related papers (2020-04-13T20:06:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.