論文の概要: SpotHitPy: A Study For ML-Based Song Hit Prediction Using Spotify
- arxiv url: http://arxiv.org/abs/2301.07978v1
- Date: Thu, 19 Jan 2023 10:13:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-20 15:15:43.288341
- Title: SpotHitPy: A Study For ML-Based Song Hit Prediction Using Spotify
- Title(参考訳): SpotHitPy:Spotifyを用いたMLベースのヒット曲予測に関する研究
- Authors: Ioannis Dimolitsas, Spyridon Kantarelis, Afroditi Fouka
- Abstract要約: 私たちは18500曲近いヒット曲と非ヒット曲のデータセットを集めました。
Spotify Web APIを使って音声機能を抽出した。
およそ86%の精度でBillboardの成功を予測できたのです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study, we approached the Hit Song Prediction problem, which aims to
predict which songs will become Billboard hits. We gathered a dataset of nearly
18500 hit and non-hit songs and extracted their audio features using the
Spotify Web API. We test four machine-learning models on our dataset. We were
able to predict the Billboard success of a song with approximately 86\%
accuracy. The most succesful algorithms were Random Forest and Support Vector
Machine.
- Abstract(参考訳): 本研究では,どの曲がビルボードヒットになるかを予測することを目的としたヒットソング予測問題にアプローチした。
私たちは約18500曲のヒット曲と非ヒット曲のデータセットを集め、Spotify Web APIを使ってオーディオ機能を抽出しました。
データセット上で4つの機械学習モデルをテストする。
我々は、約86\%の精度で、曲のビルボードの成功を予測できた。
最も成功したアルゴリズムはランダムフォレストとサポートベクターマシンである。
関連論文リスト
- Learning-Augmented Algorithms with Explicit Predictors [67.02156211760415]
アルゴリズム設計の最近の進歩は、過去のデータと現在のデータから得られた機械学習モデルによる予測の活用方法を示している。
この文脈における以前の研究は、予測器が過去のデータに基づいて事前訓練され、ブラックボックスとして使用されるパラダイムに焦点を当てていた。
本研究では,予測器を解き,アルゴリズムの課題の中で生じる学習問題を統合する。
論文 参考訳(メタデータ) (2024-03-12T08:40:21Z) - Beyond Beats: A Recipe to Song Popularity? A machine learning approach [2.6422127672474933]
本研究は,歌の人気予測における各種機械学習モデルの予測力について検討することを目的とする。
楽曲の特徴と人気に対する影響を分析するために,通常最小方形(OLS)回帰分析を用いる。
ランダムフォレストが最も効果的なモデルとして登場し、平均スコアに比べて予測精度が7.1%向上している。
論文 参考訳(メタデータ) (2024-03-01T17:14:41Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
シンボリック・ミュージック・ジェネレーションは、ユーザーが音楽を作るのに役立つ音符を作成することを目的としている。
私たちは「GETMusic」と呼ばれるフレームワークを紹介します。「GET'」は「GEnerate Music Tracks」の略です。
GETScoreは、音符をトークンとして表現し、2D構造でトークンを整理する。
提案する表現は,非自己回帰生成モデルと組み合わせて,任意のソース・ターゲットトラックの組み合わせでGETMusicに音楽を生成する。
論文 参考訳(メタデータ) (2023-05-18T09:53:23Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - An Analysis of Classification Approaches for Hit Song Prediction using
Engineered Metadata Features with Lyrics and Audio Features [5.871032585001082]
本研究は,より代替的なメタデータを用いて,Billboard Hot 100曲のトップ10ヒット曲の予測結果を改善することを目的としている。
k-nearest、Naive Bayes、Random Forest、Logistic Regression、Multilayer Perceptronの5つの機械学習アプローチが適用される。
その結果,Random Forest (RF) と Logistic Regression (LR) は,それぞれ89.1%,87.2%,0.91,0.93AUCを達成している。
論文 参考訳(メタデータ) (2023-01-31T09:48:53Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
テキスト記述から完全で意味論的に一貫したシンボリック音楽の楽譜を生成する。
テキスト・音楽生成タスクにおける自然言語処理のための公開チェックポイントの有効性について検討する。
実験結果から, BLEUスコアと編集距離の類似性において, 事前学習によるチェックポイントの使用による改善が統計的に有意であることが示唆された。
論文 参考訳(メタデータ) (2022-11-21T07:19:17Z) - Context-Based Music Recommendation Algorithm Evaluation [0.0]
本稿では,ユーザが曲を好むかどうかを予測するための6つの機械学習アルゴリズムとその個々の精度について検討する。
探索されたアルゴリズムには、ロジスティック回帰、ネイブベイズ、シークエンシャル最小最適化(SMO)、マルチレイヤーパーセプトロン(ニューラルネットワーク)、Nearest Neighbor、ランダムフォレストなどがある。
Spotify APIによって提供される各曲の特徴を分析することで、Random Forestはユーザーが84%の精度で曲を好むかどうかを予測する最も成功したアルゴリズムである。
論文 参考訳(メタデータ) (2021-12-16T01:46:36Z) - Hit Song Prediction Based on Early Adopter Data and Audio Features [5.88864611435337]
本研究は、楽曲のヒットポテンシャルを評価するための新たな戦略を提供する。
音声データとソーシャルメディアの聴取行動を利用するモデルが多数開発された。
その結果、トップ20のダンスヒットを予測した場合、アーリーアダプター動作に基づくモデルが良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-10-16T06:42:40Z) - dMelodies: A Music Dataset for Disentanglement Learning [70.90415511736089]
我々は、研究者が様々な領域でアルゴリズムの有効性を実証するのに役立つ新しいシンボリック・ミュージック・データセットを提案する。
これはまた、音楽用に特別に設計されたアルゴリズムを評価する手段を提供する。
データセットは、遠絡学習のためのディープネットワークのトレーニングとテストに十分な大きさ(約13万データポイント)である。
論文 参考訳(メタデータ) (2020-07-29T19:20:07Z) - Predicting Afrobeats Hit Songs Using Spotify Data [0.0]
Spotify Web APIを通じて2063曲のデータセットが作成された。
ランダムフォレストとグラディエントブースティングのアルゴリズムは、約86%のF1スコアで成功した。
論文 参考訳(メタデータ) (2020-07-07T00:14:30Z) - Jukebox: A Generative Model for Music [75.242747436901]
Jukebox(ジュークボックス)は、生のオーディオドメインで歌いながら音楽を生成するモデルである。
複数スケールのVQ-VAEを用いて生音声の長いコンテキストに取り組み,それを離散コードに圧縮する。
複数分間のコヒーレンスで高忠実で多様な曲を生成できることを示す。
論文 参考訳(メタデータ) (2020-04-30T09:02:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。