論文の概要: Position Regression for Unsupervised Anomaly Detection
- arxiv url: http://arxiv.org/abs/2301.08064v1
- Date: Thu, 19 Jan 2023 13:22:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-20 15:09:25.280841
- Title: Position Regression for Unsupervised Anomaly Detection
- Title(参考訳): 教師なし異常検出のための位置回帰
- Authors: Florentin Bieder, Julia Wolleb, Robin Sandk\"uhler, Philippe C. Cattin
- Abstract要約: 座標回帰に基づく新しい異常検出手法を提案する。
本手法は,健康な被験者のデータのみに基づいて,ボリューム内のパッチの位置を推定する。
本手法は,画像再構成に係わる他の手法よりも少ないメモリを必要とすることを示す。
- 参考スコア(独自算出の注目度): 0.8999666725996974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, anomaly detection has become an essential field in medical
image analysis. Most current anomaly detection methods for medical images are
based on image reconstruction. In this work, we propose a novel anomaly
detection approach based on coordinate regression. Our method estimates the
position of patches within a volume, and is trained only on data of healthy
subjects. During inference, we can detect and localize anomalies by considering
the error of the position estimate of a given patch. We apply our method to 3D
CT volumes and evaluate it on patients with intracranial haemorrhages and
cranial fractures. The results show that our method performs well in detecting
these anomalies. Furthermore, we show that our method requires less memory than
comparable approaches that involve image reconstruction. This is highly
relevant for processing large 3D volumes, for instance, CT or MRI scans.
- Abstract(参考訳): 近年,医療画像解析において異常検出が重要な分野となっている。
現在の医療画像の異常検出法は画像再構成に基づいている。
本研究では,座標回帰に基づく新しい異常検出手法を提案する。
本手法は,健康な被験者のデータのみに基づいて,ボリューム内のパッチの位置を推定する。
推定中、与えられたパッチの位置推定の誤差を考慮して異常を検出・局所化することができる。
頭蓋内出血と頭蓋骨骨折の3次元ctデータに本法を適用し,その評価を行った。
その結果,本手法は異常検出に有効であることがわかった。
さらに,本手法は画像再構成を伴う手法に比べて少ないメモリを必要とすることを示した。
これは、例えばCTやMRIなどの大規模な3Dボリュームの処理に非常に関係している。
関連論文リスト
- Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
本稿では,一級半教師付き健康画像生成のための空間意識生成ネットワーク(SAGAN)について紹介する。
SAGANは、正常な画像の復元と擬似異常画像の復元によって導かれる、ラベルのないデータに対応する高品質な健康画像を生成する。
3つの医学データセットに対する大規模な実験は、提案されたSAGANが最先端の手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-05-21T15:41:34Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - AnoDODE: Anomaly Detection with Diffusion ODE [0.0]
異常検出は、データセットの大部分から著しく逸脱する非定型的なデータサンプルを特定するプロセスである。
医用画像から抽出した特徴量の密度を推定し,拡散モードに基づく新しい異常検出手法を提案する。
提案手法は異常を識別するだけでなく,画像レベルと画素レベルでの解釈性も提供する。
論文 参考訳(メタデータ) (2023-10-10T08:44:47Z) - Unsupervised anomaly localization in high-resolution breast scans using deep pluralistic image completion [5.911215493148418]
デジタル乳房共生(DBT)における腫瘍自動検出は, 天然腫瘍の出現率, 乳房組織の変化, 高分解能のため難しい課題である。
機械学習におけるほとんどの異常なローカライゼーション研究は、非医療的なデータセットに焦点を当てている。
論文 参考訳(メタデータ) (2023-05-04T18:28:09Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
無線画像からの異常検出のための空間認識型メモリキューを提案する(略してSQUID)。
SQUIDは, 微細な解剖学的構造を逐次パターンに分類でき, 推測では画像中の異常(見えない/修正されたパターン)を識別できる。
論文 参考訳(メタデータ) (2021-11-26T13:47:34Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
本稿では,容積医用画像における多変量分類の課題について紹介する。
本稿では,複数のインスタンス学習型畳み込みニューラルネットワークであるAxialNetを提案する。
そして、HiResCAMと3D許容領域を利用した新しいマスクロスにより、モデルの学習を改善することを目指す。
論文 参考訳(メタデータ) (2021-11-24T01:14:33Z) - Self-Supervised Out-of-Distribution Detection in Brain CT Scans [46.78055929759839]
本稿では,異常検出のための自己教師付き学習手法を提案する。
私たちのアーキテクチャは、主に、1)再構成と2)幾何学的変換を予測する2つの部分で構成されています。
試験時間において、幾何変換予測器は、幾何変換と予測との誤差を計算することにより、異常スコアを割り当てることができる。
論文 参考訳(メタデータ) (2020-11-10T22:21:48Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
画像異常検出の新しい強力な手法を提案する。
これは、再設計されたトレーニングパイプラインを備えた古典的なオートエンコーダアプローチに依存している。
複雑な医用画像解析タスクにおける最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2020-06-23T18:45:55Z) - Unsupervised Lesion Detection via Image Restoration with a Normative
Prior [6.495883501989547]
本稿では,ネットワークをベースとした事前分布を規範分布とし,MAP推定を用いて画素単位で病変を検出する確率モデルを提案する。
脳MRIにおけるグリオーマと脳卒中病変の実験は、提案手法が最先端の教師なし手法よりかなり優れていることを示している。
論文 参考訳(メタデータ) (2020-04-30T18:03:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。