論文の概要: Shapley Values with Uncertain Value Functions
- arxiv url: http://arxiv.org/abs/2301.08086v1
- Date: Thu, 19 Jan 2023 14:07:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-20 14:58:05.671710
- Title: Shapley Values with Uncertain Value Functions
- Title(参考訳): 不確定値関数を持つshapley値
- Authors: Raoul Heese, Sascha M\"ucke, Matthias Jakobs, Thore Gerlach, Nico
Piatkowski
- Abstract要約: ランダムな効果は、ノイズのないがシフトした値関数を持つShapley値に吸収可能であることを示す。
信頼性の高い評価は、通常より多くの計算努力を必要とする。
- 参考スコア(独自算出の注目度): 0.755972004983746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel definition of Shapley values with uncertain value
functions based on first principles using probability theory. Such uncertain
value functions can arise in the context of explainable machine learning as a
result of non-deterministic algorithms. We show that random effects can in fact
be absorbed into a Shapley value with a noiseless but shifted value function.
Hence, Shapley values with uncertain value functions can be used in analogy to
regular Shapley values. However, their reliable evaluation typically requires
more computational effort.
- Abstract(参考訳): 確率論を用いた第一原理に基づく不確実な値関数を持つシェープリー値の新しい定義を提案する。
このような不確定値関数は、非決定論的アルゴリズムの結果として説明可能な機械学習の文脈で生じる。
ランダム効果は、ノイズのないがシフトした値関数を持つShapley値に吸収可能であることを示す。
したがって、不確実な値関数を持つシェープリー値は、正規シェープリー値と類似して用いられる。
しかし、その信頼性評価は一般により多くの計算努力を必要とする。
関連論文リスト
- Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
冗長な手法を排除し、単純で効率的なシェープリー推定器SimSHAPを提案する。
既存手法の解析において、推定器は特徴部分集合からランダムに要約された値の線形変換として統一可能であることを観察する。
実験により,SimSHAPの有効性が検証され,精度の高いShapley値の計算が大幅に高速化された。
論文 参考訳(メタデータ) (2023-11-02T06:09:24Z) - Shapley Value on Probabilistic Classifiers [6.163093930860032]
機械学習(ML)の文脈では、データ評価手法は、MLモデルの実用性に対する各データポイントの寄与を公平に測定することを目的としている。
従来のShapleyベースのデータ評価手法は、有益と有害なトレーニングデータポイントを効果的に区別するものではない。
確率的効用関数を構成することにより確率的シェープ(P-Shapley)値を提案する。
論文 参考訳(メタデータ) (2023-06-12T15:09:13Z) - Efficient Shapley Values Estimation by Amortization for Text
Classification [66.7725354593271]
我々は,各入力特徴のシェープ値を直接予測し,追加のモデル評価を行なわずに補正モデルを開発する。
2つのテキスト分類データセットの実験結果から、アモルタイズされたモデルでは、Shapley Valuesを最大60倍のスピードアップで正確に見積もっている。
論文 参考訳(メタデータ) (2023-05-31T16:19:13Z) - Confidence-Conditioned Value Functions for Offline Reinforcement
Learning [86.59173545987984]
本稿では,任意の信頼度を高い確率で同時に学習するベルマンバックアップ方式を提案する。
理論的には、学習した値関数が真値の任意の信頼度で保守的な推定値を生成することを示す。
論文 参考訳(メタデータ) (2022-12-08T23:56:47Z) - WeightedSHAP: analyzing and improving Shapley based feature attributions [17.340091573913316]
共有価値(Shapley value)は、個々の特徴の影響を測定するための一般的なアプローチである。
WeightedSHAPを提案する。これはShapleyの価値を一般化し、データから直接フォーカスする限界貢献を学習する。
いくつかの実世界のデータセットにおいて、WeightedSHAPによって識別される影響のある特徴がモデルの予測を再カプセル化できることを示す。
論文 参考訳(メタデータ) (2022-09-27T14:34:07Z) - SHAP-XRT: The Shapley Value Meets Conditional Independence Testing [21.794110108580746]
そこで本研究では,Shapleyに基づく説明手法と条件付き独立性テストが密接に関連していることを示す。
本研究では,条件付きランダム化テスト(CRT, Conditional Randomization Test)にインスパイアされたテスト手法であるSHAPley Explanation Randomization Test(SHAP-XRT)を紹介した。
我々は、Shapley値自体が大域(つまり全体)のnull仮説の期待$p$-値に上限を与えることを示した。
論文 参考訳(メタデータ) (2022-07-14T16:28:54Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
線形関数近似を用いた強化学習における非政治的評価問題について検討する。
本稿では,値関数の分散を推定し,フィルタQ-Iterationにおけるベルマン残差を再重み付けするアルゴリズムVA-OPEを提案する。
論文 参考訳(メタデータ) (2021-06-22T17:58:46Z) - Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual
Predictions of Complex Models [6.423239719448169]
シェープ値は、モデルの予測と平均ベースラインの差をモデルへの入力として使用する異なる特徴に関連付けるように設計されている。
これらの「因果」シャプリー値が、それらの望ましい性質を犠牲にすることなく、一般因果グラフに対してどのように導出できるかを示す。
論文 参考訳(メタデータ) (2020-11-03T11:11:36Z) - Predictive and Causal Implications of using Shapley Value for Model
Interpretation [6.744385328015561]
我々は、予測モデルと因果モデルの両方において重要な概念である、シェープ価値と条件独立の関係を確立した。
その結果,モデルから高いShapley値を持つ変数を排除しても必ずしも予測性能を損なうとは限らないことが示唆された。
さらに重要なことに、変数のShapley値は、関心の対象との因果関係を反映しない。
論文 参考訳(メタデータ) (2020-08-12T01:08:08Z) - Bayesian Optimization with Missing Inputs [53.476096769837724]
我々は、よく知られたアッパー信頼境界(UCB)獲得関数に基づく新たな獲得関数を開発する。
我々は,本手法の有用性を示すために,合成アプリケーションと実世界のアプリケーションの両方について包括的な実験を行った。
論文 参考訳(メタデータ) (2020-06-19T03:56:27Z) - Towards Efficient Data Valuation Based on the Shapley Value [65.4167993220998]
本稿では,Shapley値を用いたデータ評価の問題点について検討する。
Shapleyの値は、データ値の概念に対して多くのデシダータを満たすユニークなペイオフスキームを定義する。
本稿では,Shapley値を近似する効率的なアルゴリズムのレパートリーを提案する。
論文 参考訳(メタデータ) (2019-02-27T00:22:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。