論文の概要: RGB-D-Based Categorical Object Pose and Shape Estimation: Methods,
Datasets, and Evaluation
- arxiv url: http://arxiv.org/abs/2301.08147v1
- Date: Thu, 19 Jan 2023 15:59:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-20 14:39:37.173710
- Title: RGB-D-Based Categorical Object Pose and Shape Estimation: Methods,
Datasets, and Evaluation
- Title(参考訳): RGB-Dをベースとしたカテゴリオブジェクトマップと形状推定:方法,データセット,評価
- Authors: Leonard Bruns, Patric Jensfelt
- Abstract要約: この研究は、メソッド、データセット、評価プロトコルの観点から、この分野の概要を提供する。
我々は、メトリクスやデータセットを含む主要な評価プロトコルを批判的に見ていく。
我々は、新しいメトリクスセットを提案し、Redwoodデータセットに新しいアノテーションを提供し、公正な比較で最先端の手法を評価する。
- 参考スコア(独自算出の注目度): 5.71097144710995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, various methods for 6D pose and shape estimation of objects at a
per-category level have been proposed. This work provides an overview of the
field in terms of methods, datasets, and evaluation protocols. First, an
overview of existing works and their commonalities and differences is provided.
Second, we take a critical look at the predominant evaluation protocol,
including metrics and datasets. Based on the findings, we propose a new set of
metrics, contribute new annotations for the Redwood dataset, and evaluate
state-of-the-art methods in a fair comparison. The results indicate that
existing methods do not generalize well to unconstrained orientations and are
actually heavily biased towards objects being upright. We provide an
easy-to-use evaluation toolbox with well-defined metrics, methods, and dataset
interfaces, which allows evaluation and comparison with various
state-of-the-art approaches
(https://github.com/roym899/pose_and_shape_evaluation).
- Abstract(参考訳): 近年,6次元ポーズの方法やカテゴリ単位の物体形状推定手法が提案されている。
この研究は、メソッド、データセット、評価プロトコルの観点から、この分野の概要を提供する。
まず,既存作品の概要と共通点と相違点について述べる。
第二に、メトリクスやデータセットを含む主要な評価プロトコルを批判的に見ていく。
この結果に基づき,新しいメトリクスセットを提案し,redwoodデータセットに新しいアノテーションを提供し,公平に比較して最先端のメソッドを評価する。
その結果、既存の手法は制約のない向きにうまく一般化せず、実際には直立するオブジェクトに対して強く偏っていることが示された。
本稿では,さまざまな最先端手法(https://github.com/roym899/pose_and_shape_evaluation)による評価と比較が可能な,明確に定義されたメトリクス,メソッド,データセットインターフェースを備えた使いやすい評価ツールボックスを提供する。
関連論文リスト
- A Closer Look at Deep Learning on Tabular Data [52.50778536274327]
タブラルデータは、機械学習の様々な領域で広く使われている。
Deep Neural Network(DNN)ベースの手法は、ツリーベースに匹敵する有望なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-07-01T04:24:07Z) - FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects [55.77542145604758]
FoundationPoseは、6Dオブジェクトのポーズ推定と追跡のための統合基盤モデルである。
我々のアプローチは、微調整なしで、テスト時に新しいオブジェクトに即座に適用できる。
論文 参考訳(メタデータ) (2023-12-13T18:28:09Z) - For A More Comprehensive Evaluation of 6DoF Object Pose Tracking [22.696375341994035]
上記の問題に対処するために、統一されたベンチマークに貢献する。
YCBVのより正確なアノテーションとして,多視点多目的グローバルポーズ改善法を提案する。
実験では,リアルな半合成データセットを用いて,提案手法の精度と信頼性を検証した。
論文 参考訳(メタデータ) (2023-09-14T15:35:08Z) - Leveraging Knowledge Graphs for Zero-Shot Object-agnostic State
Classification [1.6582445398167214]
我々は,オブジェクトの知識や推定に頼らずに,あるオブジェクトの状態を予測する最初のオブジェクト非依存状態分類法(OaSC)を提案する。
提案手法の各種環境における性能について検討した。
提案したOaSC法は,すべてのデータセットやベンチマークにおける既存手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2023-07-22T22:19:11Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
これらの評価手法を用いて、広範囲のモデルにおいて広く用いられている属性手法の長所と短所について検討する。
論文 参考訳(メタデータ) (2023-03-21T14:24:58Z) - Sanity checks and improvements for patch visualisation in
prototype-based image classification [0.0]
プロトタイプに基づく視覚分類のための2つの一般的な自己説明モデルに実装された視覚的手法の詳細な分析を行う。
まず、そのような手法は画像内の関心領域を正確に識別せず、従ってモデル動作を反映しないことを示す。
我々は,同じ可視化手法を共有する他のプロトタイプベースモデルに対して,本研究がもたらす意味について論じる。
論文 参考訳(メタデータ) (2023-01-20T15:13:04Z) - Towards Better Understanding Attribution Methods [77.1487219861185]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
また,いくつかの属性法の性能を著しく向上する処理後平滑化ステップを提案する。
論文 参考訳(メタデータ) (2022-05-20T20:50:17Z) - Evaluating Feature Attribution Methods in the Image Domain [7.852862161478641]
既存のメトリクスについて検討し、属性マップの評価のための新しいメトリクスの変種を提案する。
異なる帰属指標は、帰属写像の根底にある異なる概念を測っているように見える。
本稿では,あるユースケースに対して理想的な特徴属性法を特定するための一般的なベンチマーク手法を提案する。
論文 参考訳(メタデータ) (2022-02-22T15:14:33Z) - On the Evaluation of RGB-D-based Categorical Pose and Shape Estimation [5.71097144710995]
この研究では、メトリクスやデータセットを含む、この主要な評価プロトコルを批判的に見ていきます。
我々は、新しいメトリクスセットを提案し、Redwoodデータセットに新しいアノテーションを提供し、公正な比較で最先端の手法を評価する。
論文 参考訳(メタデータ) (2022-02-21T16:31:18Z) - Scaling up Multi-domain Semantic Segmentation with Sentence Embeddings [81.09026586111811]
ゼロショット設定に適用した場合、最先端の教師付き性能を実現するセマンティックセマンティックセマンティクスへのアプローチを提案する。
これは各クラスラベルを、クラスを記述する短い段落のベクトル値の埋め込みに置き換えることによって達成される。
結果として得られた200万以上の画像の統合セマンティックセグメンテーションデータセットは、7つのベンチマークデータセット上の最先端の教師付きメソッドと同等のパフォーマンスを達成するモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-02-04T07:19:09Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。