A Multi-Resolution Framework for U-Nets with Applications to
Hierarchical VAEs
- URL: http://arxiv.org/abs/2301.08187v1
- Date: Thu, 19 Jan 2023 17:33:48 GMT
- Title: A Multi-Resolution Framework for U-Nets with Applications to
Hierarchical VAEs
- Authors: Fabian Falck, Christopher Williams, Dominic Danks, George
Deligiannidis, Christopher Yau, Chris Holmes, Arnaud Doucet, Matthew Willetts
- Abstract summary: We formulate a multi-resolution framework which identifies U-Nets as finite-dimensional truncations of models on an infinite-dimensional function space.
We then leverage our framework to identify state-of-the-art hierarchical VAEs (HVAEs) which have a U-Net architecture.
- Score: 29.995904718691204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: U-Net architectures are ubiquitous in state-of-the-art deep learning, however
their regularisation properties and relationship to wavelets are understudied.
In this paper, we formulate a multi-resolution framework which identifies
U-Nets as finite-dimensional truncations of models on an infinite-dimensional
function space. We provide theoretical results which prove that average pooling
corresponds to projection within the space of square-integrable functions and
show that U-Nets with average pooling implicitly learn a Haar wavelet basis
representation of the data. We then leverage our framework to identify
state-of-the-art hierarchical VAEs (HVAEs), which have a U-Net architecture, as
a type of two-step forward Euler discretisation of multi-resolution diffusion
processes which flow from a point mass, introducing sampling instabilities. We
also demonstrate that HVAEs learn a representation of time which allows for
improved parameter efficiency through weight-sharing. We use this observation
to achieve state-of-the-art HVAE performance with half the number of parameters
of existing models, exploiting the properties of our continuous-time
formulation.
Related papers
- Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NAS has emerged, generalizing the search process from dataset-dependent to task-dependent.
This paper introduces POMONAG, extending DiffusionNAG via a many-optimal diffusion process.
Results were validated on two search spaces -- NAS201 and MobileNetV3 -- and evaluated across 15 image classification datasets.
arXiv Detail & Related papers (2024-09-30T16:05:29Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - SineNet: Learning Temporal Dynamics in Time-Dependent Partial Differential Equations [46.244771659503314]
We propose SineNet, consisting of multiple sequentially connected U-shaped network blocks, referred to as waves.
In SineNet, high-resolution features are evolved progressively through multiple stages, thereby reducing the amount of misalignment within each stage.
Our method is rigorously tested on multiple PDE datasets, including the Navier-Stokes equations and shallow water equations.
arXiv Detail & Related papers (2024-03-28T15:41:41Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - Non-Separable Multi-Dimensional Network Flows for Visual Computing [62.50191141358778]
We propose a novel formalism for non-separable multi-dimensional network flows.
Since the flow is defined on a per-dimension basis, the maximizing flow automatically chooses the best matching feature dimensions.
As a proof of concept, we apply our formalism to the multi-object tracking problem and demonstrate that our approach outperforms scalar formulations on the MOT16 benchmark in terms of robustness to noise.
arXiv Detail & Related papers (2023-05-15T13:21:44Z) - ParaFormer: Parallel Attention Transformer for Efficient Feature
Matching [8.552303361149612]
This paper proposes a novel parallel attention model entitled ParaFormer.
It fuses features and keypoint positions through the concept of amplitude and phase, and integrates self- and cross-attention in a parallel manner.
Experiments on various applications, including homography estimation, pose estimation, and image matching, demonstrate that ParaFormer achieves state-of-the-art performance.
The efficient ParaFormer-U variant achieves comparable performance with less than 50% FLOPs of the existing attention-based models.
arXiv Detail & Related papers (2023-03-02T03:29:16Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Probabilistic partition of unity networks for high-dimensional
regression problems [1.0227479910430863]
We explore the partition of unity network (PPOU-Net) model in the context of high-dimensional regression problems.
We propose a general framework focusing on adaptive dimensionality reduction.
The PPOU-Nets consistently outperform the baseline fully-connected neural networks of comparable sizes in numerical experiments.
arXiv Detail & Related papers (2022-10-06T06:01:36Z) - Towards Multi-spatiotemporal-scale Generalized PDE Modeling [4.924631198058705]
We make a comparison between various FNO and U-Net like approaches on fluid mechanics problems in both vorticity-stream and velocity function form.
We show promising results on generalization to different PDE parameters and time-scales with a single surrogate model.
arXiv Detail & Related papers (2022-09-30T17:40:05Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
We introduce channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR)
Our mAR prior for models with split coupling flow layers (mAR-SCF) can better capture dependencies in complex multimodal data.
We show that mAR-SCF allows for improved image generation quality, with gains in FID and Inception scores compared to state-of-the-art flow-based models.
arXiv Detail & Related papers (2020-04-08T09:07:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.