A Survey of research in Deep Learning for Robotics for Undergraduate
research interns
- URL: http://arxiv.org/abs/2301.08283v2
- Date: Mon, 23 Jan 2023 03:27:25 GMT
- Title: A Survey of research in Deep Learning for Robotics for Undergraduate
research interns
- Authors: Narayanan PP and Palacode Narayana Iyer Anantharaman
- Abstract summary: We aim to survey a number of research internship projects in the broad area of 'Deep Learning as applied to Robotics'
We particularly focus on papers that use deep learning to solve core robotic problems and also robotic solutions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the last several years, use cases for robotics based solutions have
diversified from factory floors to domestic applications. In parallel, Deep
Learning approaches are replacing traditional techniques in Computer Vision,
Natural Language Processing, Speech processing, etc. and are delivering robust
results. Our goal is to survey a number of research internship projects in the
broad area of 'Deep Learning as applied to Robotics' and present a concise view
for the benefit of aspiring student interns. In this paper, we survey the
research work done by Robotic Institute Summer Scholars (RISS), CMU. We
particularly focus on papers that use deep learning to solve core robotic
problems and also robotic solutions. We trust this would be useful particularly
for internship aspirants for the Robotics Institute, CMU
Related papers
- Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis [82.59451639072073]
General-purpose robots operate seamlessly in any environment, with any object, and utilize various skills to complete diverse tasks.
As a community, we have been constraining most robotic systems by designing them for specific tasks, training them on specific datasets, and deploying them within specific environments.
Motivated by the impressive open-set performance and content generation capabilities of web-scale, large-capacity pre-trained models, we devote this survey to exploring how foundation models can be applied to general-purpose robotics.
arXiv Detail & Related papers (2023-12-14T10:02:55Z) - HomeRobot: Open-Vocabulary Mobile Manipulation [107.05702777141178]
Open-Vocabulary Mobile Manipulation (OVMM) is the problem of picking any object in any unseen environment, and placing it in a commanded location.
HomeRobot has two components: a simulation component, which uses a large and diverse curated object set in new, high-quality multi-room home environments; and a real-world component, providing a software stack for the low-cost Hello Robot Stretch.
arXiv Detail & Related papers (2023-06-20T14:30:32Z) - A Concise Introduction to Reinforcement Learning in Robotics [0.0]
This paper aims to serve as a reference guide for researchers in reinforcement learning applied to the field of robotics.
We have covered the most essential concepts required for research in the field of reinforcement learning, with robotics in mind.
arXiv Detail & Related papers (2022-10-13T22:29:42Z) - Aplica\c{c}\~ao de ros como ferramenta de ensino a rob\'otica / using
ros as a robotics teaching tool [0.0]
The study of robotic manipulators is the main goal of Industrial Robotics Class.
This article aims to expose the use of the Robot Operation System (ROS) as a tool to develop a robotic arm.
arXiv Detail & Related papers (2022-03-31T09:48:21Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Autonomous Navigation in Dynamic Environments: Deep Learning-Based
Approach [0.0]
This thesis studies different deep learning-based approaches, highlighting the advantages and disadvantages of each scheme.
One of the deep learning methods based on convolutional neural network (CNN) is realized by software implementations.
We propose a low-cost approach, for indoor applications such as restaurants, museums, etc, on the base of using a monocular camera instead of a laser scanner.
arXiv Detail & Related papers (2021-02-03T23:20:20Z) - Semantics for Robotic Mapping, Perception and Interaction: A Survey [93.93587844202534]
Study of understanding dictates what does the world "mean" to a robot.
With humans and robots increasingly operating in the same world, the prospects of human-robot interaction also bring semantics into the picture.
Driven by need, as well as by enablers like increasing availability of training data and computational resources, semantics is a rapidly growing research area in robotics.
arXiv Detail & Related papers (2021-01-02T12:34:39Z) - A Systematic Literature Review on the Use of Deep Learning in Software
Engineering Research [22.21817722054742]
An increasingly popular set of techniques adopted by software engineering (SE) researchers to automate development tasks are those rooted in the concept of Deep Learning (DL)
This paper presents a systematic literature review of research at the intersection of SE & DL.
We center our analysis around the components of learning, a set of principles that govern the application of machine learning techniques to a given problem domain.
arXiv Detail & Related papers (2020-09-14T15:28:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.