Pneumonia Detection in Chest X-Ray Images : Handling Class Imbalance
- URL: http://arxiv.org/abs/2301.08479v1
- Date: Fri, 20 Jan 2023 09:17:39 GMT
- Title: Pneumonia Detection in Chest X-Ray Images : Handling Class Imbalance
- Authors: Wardah Ali, Eesha Qureshi, Omama Ahmed Farooqi, Rizwan Ahmed Khan
- Abstract summary: People all over the globe are affected by pneumonia but deaths due to it are highest in Sub-Saharan Asia and South Asia.
In recent years, the overall incidence and mortality rate of pneumonia regardless of the utilization of effective vaccines and compelling antibiotics has escalated.
The widespread prevalence of pneumonia has caused the research community to come up with a framework that helps detect, diagnose and analyze diseases accurately and promptly.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: People all over the globe are affected by pneumonia but deaths due to it are
highest in Sub-Saharan Asia and South Asia. In recent years, the overall
incidence and mortality rate of pneumonia regardless of the utilization of
effective vaccines and compelling antibiotics has escalated. Thus, pneumonia
remains a disease that needs spry prevention and treatment. The widespread
prevalence of pneumonia has caused the research community to come up with a
framework that helps detect, diagnose and analyze diseases accurately and
promptly. One of the major hurdles faced by the Artificial Intelligence (AI)
research community is the lack of publicly available datasets for chest
diseases, including pneumonia . Secondly, few of the available datasets are
highly imbalanced (normal examples are over sampled, while samples with ailment
are in severe minority) making the problem even more challenging. In this
article we present a novel framework for the detection of pneumonia. The
novelty of the proposed methodology lies in the tackling of class imbalance
problem. The Generative Adversarial Network (GAN), specifically a combination
of Deep Convolutional Generative Adversarial Network (DCGAN) and Wasserstein
GAN gradient penalty (WGAN-GP) was applied on the minority class ``Pneumonia''
for augmentation, whereas Random Under-Sampling (RUS) was done on the majority
class ``No Findings'' to deal with the imbalance problem. The ChestX-Ray8
dataset, one of the biggest datasets, is used to validate the performance of
the proposed framework. The learning phase is completed using transfer learning
on state-of-the-art deep learning models i.e. ResNet-50, Xception, and VGG-16.
Results obtained exceed state-of-the-art.
Related papers
- FA-Net: A Fuzzy Attention-aided Deep Neural Network for Pneumonia Detection in Chest X-Rays [28.319405767795047]
Pneumonia is a respiratory infection caused by bacteria, fungi, or viruses.
Early diagnosis is crucial to ensure effective treatment and increase survival rates.
We have developed a computer-aided diagnosis system for automatic pneumonia detection using chest X-ray images.
arXiv Detail & Related papers (2024-06-21T13:08:40Z) - A Comparison Study of Deep CNN Architecture in Detecting of Pneumonia [0.0]
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people.
Deep convolutional neural network to classify plant diseases based on images and tested its performance.
DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time.
arXiv Detail & Related papers (2022-12-30T14:37:32Z) - An Adaptive and Altruistic PSO-based Deep Feature Selection Method for
Pneumonia Detection from Chest X-Rays [28.656853454251426]
Pneumonia is one of the major reasons for child mortality especially in income-deprived regions of the world.
Computer-aided based diagnosis (CAD) systems can be used in such countries due to their lower operating costs than professional medical experts.
We propose a CAD system for Pneumonia detection from Chest X-rays, using the concepts of deep learning and a meta-heuristic algorithm.
arXiv Detail & Related papers (2022-08-06T18:20:50Z) - Deep Pneumonia: Attention-Based Contrastive Learning for
Class-Imbalanced Pneumonia Lesion Recognition in Chest X-rays [11.229472535033558]
We propose a deep learning framework named Attention-Based Contrastive Learning for Class-Imbalanced X-Ray Pneumonia Lesion Recognition.
Our proposed framework can be used as a reliable computer-aided pneumonia diagnosis system to assist doctors to better diagnose pneumonia cases accurately.
arXiv Detail & Related papers (2022-07-23T02:28:37Z) - An ensemble-based approach by fine-tuning the deep transfer learning
models to classify pneumonia from chest X-ray images [0.0]
More than 250,000 individuals in the United States, mainly adults, are diagnosed with pneumonia each year, and 50,000 die from the disease.
It is not uncommon to overlook pneumonia detection for a well-trained radiologist, which triggers the need for improvement in the diagnosis's accuracy.
We trained, fine-tuned the state-of-the-art deep learning models such as InceptionResNet, MobileNetV2, Xception, DenseNet201, and ResNet152V2 to classify pneumonia accurately.
arXiv Detail & Related papers (2020-11-11T04:50:06Z) - Contralaterally Enhanced Networks for Thoracic Disease Detection [120.60868136876599]
There exist many similar structures in the left and right parts of the chest, such as ribs, lung fields and bronchial tubes.
This kind of similarities can be used to identify diseases in chest X-rays, according to the experience of broad-certificated radiologists.
We propose a deep end-to-end module to exploit the contralateral context information for enhancing feature representations of disease proposals.
arXiv Detail & Related papers (2020-10-09T10:15:26Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
Pneumonia is the leading cause of death among young children and one of the top mortality causes worldwide.
Computer-aided diagnosis systems showed the potential for improving diagnostic accuracy.
We develop the computational approach for pneumonia regions detection based on single-shot detectors, squeeze-and-excitation deep convolution neural networks, augmentations and multi-task learning.
arXiv Detail & Related papers (2020-05-28T10:54:34Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - COVID-DA: Deep Domain Adaptation from Typical Pneumonia to COVID-19 [92.4955073477381]
The outbreak of novel coronavirus disease 2019 (COVID-19) has already infected millions of people and is still rapidly spreading all over the globe.
Deep learning has been used recently as effective computer-aided means to improve diagnostic efficiency.
We propose a new deep domain adaptation method for COVID-19 diagnosis, namely COVID-DA.
arXiv Detail & Related papers (2020-04-30T03:13:40Z) - A Thorough Comparison Study on Adversarial Attacks and Defenses for
Common Thorax Disease Classification in Chest X-rays [63.675522663422896]
We review various adversarial attack and defense methods on chest X-rays.
We find that the attack and defense methods have poor performance with excessive iterations and large perturbations.
We propose a new defense method that is robust to different degrees of perturbations.
arXiv Detail & Related papers (2020-03-31T06:21:03Z) - Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware
Anomaly Detection [86.81773672627406]
Clusters of viral pneumonia during a short period of time may be a harbinger of an outbreak or pandemic, like SARS, MERS, and recent COVID-19.
Rapid and accurate detection of viral pneumonia using chest X-ray can be significantly useful in large-scale screening and epidemic prevention.
Viral pneumonia often have diverse causes and exhibit notably different visual appearances on X-ray images.
arXiv Detail & Related papers (2020-03-27T11:32:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.