Transmission-based noise spectroscopy for quadratic qubit-resonator
interactions
- URL: http://arxiv.org/abs/2301.08551v1
- Date: Fri, 20 Jan 2023 13:16:37 GMT
- Title: Transmission-based noise spectroscopy for quadratic qubit-resonator
interactions
- Authors: Philipp M. Mutter, Guido Burkard
- Abstract summary: Noise characteristics can be extracted from input-output measurements by recording both the averaged fluctuations in the transmission probability and the averaged phase.
Our results represent an extension to the field of transmission-based noise spectroscopy with immediate practical applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a theory describing the transient transmission through noisy
qubit-resonator systems with quadratic interactions as are found in
superconducting and nanomechanical resonators coupled to solid-state qubits.
After generalizing the quantum Langevin equations to arbitrary qubit-resonator
couplings, we show that only the cases of linear and quadratic couplings allow
for an analytical treatment within standard input-output theory. Focussing for
the first time on quadratic couplings and allowing for arbitrary initial qubit
coherences, it is shown that noise characteristics can be extracted from
input-output measurements by recording both the averaged fluctuations in the
transmission probability and the averaged phase. Our results represent an
extension to the field of transmission-based noise spectroscopy with immediate
practical applications.
Related papers
- Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits.
This circuit can serve as an efficient detector of the quantum state of superconducting qubits.
arXiv Detail & Related papers (2024-05-25T22:22:37Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Tunneling Gravimetry [58.80169804428422]
We examine the prospects of utilizing matter-wave Fabry-P'erot interferometers for enhanced inertial sensing applications.
Our study explores such tunneling-based sensors for the measurement of accelerations in two configurations.
arXiv Detail & Related papers (2022-05-19T09:22:11Z) - Interaction of quantum systems with single pulses of quantized radiation [68.8204255655161]
We describe the interaction of a propagating pulse of quantum radiation with a localized quantum system.
By transformation to an appropriate picture, we identify the usual Jaynes-Cummings Hamiltonian between the scatterer and a superposition of the initial and final mode.
The transformed master equation offers important insights into the system dynamics and it permits numerically efficient solutions.
arXiv Detail & Related papers (2022-03-14T20:23:23Z) - Fingerprints of Qubit Noise in Transient Cavity Transmission [0.0]
We study a generic two-level system with fluctuating control parameters in a photonic cavity.
We find that basic features of the noise spectral density are imprinted in the transient transmission through the cavity.
We propose a way of extracting the spectral density for arbitrary noise in a frequency band only bounded by the range of the qubit-cavity detuning.
arXiv Detail & Related papers (2022-01-21T12:37:27Z) - Nonlocal nonreciprocal optomechanical circulator [2.099922236065961]
A nonlocal circulator protocol is proposed in hybrid optomechanical system.
We establish the quantum channel between two optical modes with long-range.
arXiv Detail & Related papers (2021-12-18T13:50:58Z) - Entanglement Thresholds of Doubly-Parametric Quantum Transducers [0.0]
We study the operating parameters of doubly-parametric quantum transducers.
We find simple, explicit expressions for the necessary and sufficient conditions under which they can entangling frequencies optical and microwave modes.
These differences are important considerations in the construction of larger quantum networks that integrate multiple transducers.
arXiv Detail & Related papers (2021-10-19T20:07:30Z) - Phonon mediated non-equilibrium correlations and entanglement between
distant semiconducting qubits [0.0]
We study non-equilibrium correlations and entanglement between semiconductor qubits in a one-dimensional coupled-mechanical-resonator chain.
The results suggest that highly tunable correlations and entanglement can be generated by phonon-qubit hybrid system.
arXiv Detail & Related papers (2020-11-26T17:14:58Z) - Driving-induced resonance narrowing in a strongly coupled cavity-qubit
system [0.7943023838493658]
We study a system consisting of a superconducting flux qubit strongly coupled to a microwave cavity.
We observe resonance narrowing in the region where the splitting between the two dressed fundamental resonances is tuned to zero.
arXiv Detail & Related papers (2020-08-01T09:29:45Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.