Phonon mediated non-equilibrium correlations and entanglement between
distant semiconducting qubits
- URL: http://arxiv.org/abs/2011.13394v1
- Date: Thu, 26 Nov 2020 17:14:58 GMT
- Title: Phonon mediated non-equilibrium correlations and entanglement between
distant semiconducting qubits
- Authors: Di Yu, Zhi-Meng Guo, Guang-Wei Deng
- Abstract summary: We study non-equilibrium correlations and entanglement between semiconductor qubits in a one-dimensional coupled-mechanical-resonator chain.
The results suggest that highly tunable correlations and entanglement can be generated by phonon-qubit hybrid system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We theoretically study the non-equilibrium correlations and entanglement
between distant semiconductor qubits in a one-dimensional
coupled-mechanical-resonator chain. Each qubit is defined by a double quantum
dot (DQD) and embedded in a mechanical resonator. The two qubits can be
coupled, correlated and entangled through phonon transfer along the resonator
chain. We calculate the non-equilibrium correlations and steady-state
entanglement at different phonon-phonon coupling rates, and find a maximal
steady entanglement induced by a population inversion. The results suggest that
highly tunable correlations and entanglement can be generated by phonon-qubit
hybrid system, which will contribute to the development of mesoscopic physics
and solid-state quantum computation.
Related papers
- Noise-induced synchronization in coupled quantum oscillators [0.0]
We consider the quantum dynamics of a pair of coupled quantum oscillators coupled to a correlated dissipative environment.
We find that for fully correlated and fully anti-correlated environments, the oscillators relax into a phase-synchronized state that persists for long times.
In the extreme cases of fully correlated or fully anti-correlated environments, specific regions of state space are fully decoupled from the environment.
arXiv Detail & Related papers (2024-10-29T19:34:36Z) - Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Noise-induced quantum synchronization and maximally entangled mixed states in superconducting circuits [12.57585725172263]
Noise-induced quantum synchronization is observed in superconducting transmon qubits with nearest-neighbor interactions.
We show that the two synchronized end qubits are entangled, with nonzero concurrence, and that they belong to a class of generalized Bell states.
arXiv Detail & Related papers (2024-06-15T00:55:41Z) - Dipole coupling of a bilayer graphene quantum dot to a high-impedance
microwave resonator [0.14908922253160745]
superconducting microwave resonator with a double quantum dot electrostatically defined in a graphene-based van der Waals heterostructure.
We achieve sensitive and fast detection with a signal-to-noise ratio of 3.5 within 1 $mumathrms$ integration time.
Our results introduce cQED as a probe for quantum dots in van der Waals materials and indicate a path toward coherent charge-photon coupling with bilayer graphene quantum dots.
arXiv Detail & Related papers (2023-12-22T11:59:20Z) - Qubit Analog with Polariton Superfluid in an Annular Trap [0.0]
We report on the experimental realization and characterization of a qubit analog with semiconductor exciton-polaritons.
In our system, a condensate of exciton-polaritonsfluid is confined by a spatially-patterned pump laser in an annular trap.
We observe coherent oscillations between a pair of counter-circulating superfluid vortex states of the polaritons coupled by elastic scattering off the laser-imprinted potential.
arXiv Detail & Related papers (2023-08-10T13:13:37Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - A Hybrid Quantum-Classical Method for Electron-Phonon Systems [40.80274768055247]
We develop a hybrid quantum-classical algorithm suitable for this type of correlated systems.
This hybrid method tackles with arbitrarily strong electron-phonon coupling without increasing the number of required qubits and quantum gates.
We benchmark the new method by applying it to the paradigmatic Hubbard-Holstein model at half filling, and show that it correctly captures the competition between charge density wave and antiferromagnetic phases.
arXiv Detail & Related papers (2023-02-20T08:08:51Z) - Evolution of Quantum Nonequilibrium for Coupled Harmonic Oscillators [0.0]
We study the effects of interactions on quantum relaxation towards equilibrium for a system of one-dimensional coupled harmonic oscillators.
We show by numerical simulations that interactions can delay or even prevent complete relaxation for some initial states.
arXiv Detail & Related papers (2022-05-27T01:29:23Z) - Frequency combs with parity-protected cross-correlations from
dynamically modulated qubit arrays [117.44028458220427]
We develop a general theoretical framework to dynamically engineer quantum correlations in the frequency-comb emission from an array of superconducting qubits in a waveguide.
We demonstrate, that when the resonance of the two qubits are periodically modulated with a $pi$ phase shift, it is possible to realize simultaneous bunching and antibunching in cross-correlations of the scattered photons from different sidebands.
arXiv Detail & Related papers (2022-03-01T13:12:45Z) - Quantum coherence, correlations and nonclassical states in the two-qubit
Rabi model with parametric oscillator [0.0]
Quantum coherence and quantum correlations are studied in a strongly interacting system composed of two qubits and a parametric medium.
We employ the adiabatic approximation approach to analytically solve the system.
The reconstructed states are observed to be nearly pure generalized Bell states.
arXiv Detail & Related papers (2021-06-12T11:16:40Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.