Distributed quantum incompatibility
- URL: http://arxiv.org/abs/2301.08670v2
- Date: Wed, 27 Sep 2023 09:40:02 GMT
- Title: Distributed quantum incompatibility
- Authors: Lucas Tendick, Hermann Kampermann, Dagmar Bru{\ss}
- Abstract summary: We show that the incompatibility which is gained via additional measurements is upper and lower bounded by certain functions of the incompatibility of subsets of the available measurements.
We discuss the consequences of our results for the nonlocality that can be gained by enlarging the number of measurements in a Bell experiment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incompatible, i.e. non-jointly measurable quantum measurements are a
necessary resource for many information processing tasks. It is known that
increasing the number of distinct measurements usually enhances the
incompatibility of a measurement scheme. However, it is generally unclear how
large this enhancement is and on what it depends. Here, we show that the
incompatibility which is gained via additional measurements is upper and lower
bounded by certain functions of the incompatibility of subsets of the available
measurements. We prove the tightness of some of our bounds by providing
explicit examples based on mutually unbiased bases. Finally, we discuss the
consequences of our results for the nonlocality that can be gained by enlarging
the number of measurements in a Bell experiment.
Related papers
- Classification of joint quantum measurements based on entanglement cost of localization [42.72938925647165]
We propose a systematic classification of joint measurements based on entanglement cost.
We show how to numerically explore higher levels and construct generalizations to higher dimensions and multipartite settings.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - On compatibility of binary qubit measurements [0.0]
This work approaches the problem through functions defined on the Boolean hypercube and their Fourier transformations.
We show that this reformulation of the problem leads to a complete geometric characterisation of joint measurability of any finite set of unbiased binary qubit measurements.
We discuss our results in the realm of quantum steering, where they translate into a family of steering inequalities.
arXiv Detail & Related papers (2024-07-10T14:44:12Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Measurement incompatibility is strictly stronger than disturbance [44.99833362998488]
Heisenberg argued that measurements irreversibly alter the state of the system on which they are acting, causing an irreducible disturbance on subsequent measurements.
This article shows that measurement incompatibility is indeed a sufficient condition for irreversibility of measurement disturbance.
However, we exhibit a toy theory, termed the minimal classical theory (MCT), that is a counterexample for the converse implication.
arXiv Detail & Related papers (2023-05-26T13:47:00Z) - Quantum Discord Witness with Uncharacterized Devices [18.751513188036334]
We propose a new approach using uncharacterized measurements to witness quantum discord of an unknown bipartite state within arbitrary dimension system.
The feature of high robustness against device imperfections, such as loss-tolerance and error-tolerance, shows our method is experimentally feasible.
arXiv Detail & Related papers (2023-03-20T14:51:53Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Experimentally determining the incompatibility of two qubit measurements [55.41644538483948]
We describe and realize an experimental procedure for assessing the incompatibility of two qubit measurements.
We demonstrate this fact in an optical setup, where the qubit states are encoded into the photons' polarization degrees of freedom.
arXiv Detail & Related papers (2021-12-15T19:01:44Z) - Optimized entropic uncertainty relations for multiple measurements [4.8723490038152635]
We improve the lower bound of the entropic uncertainty relation for multiple measurements, termed as simply constructed bound (SCB)
We verify that the SCB is tighter than Liu et al.'s result for arbitrary mutually unbiased basis measurements.
It is believed that our findings would shed light on entropy-based uncertainty relations in the multiple measurement scenario.
arXiv Detail & Related papers (2021-12-02T01:29:15Z) - Quantifying incompatibility of quantum measurements through
non-commutativity [0.0]
Incompatible measurements are an important distinction between quantum mechanics and classical theories.
We explore a family of incompatibility measures based on non-commutativity.
We show that they satisfy some natural information-processing requirements.
We also consider the behavior of our measures under different types of compositions.
arXiv Detail & Related papers (2021-10-20T16:37:10Z) - How well can we guess the outcome of measurements of non-commuting
observables? [0.0]
Heisenberg's uncertainty relation says there is an ultimate limit to how precisely we may predict the outcome of position and momentum measurements on a quantum system.
We show that this limit may be violated by an arbitrarily large factor if one aims, instead, to guess the unknown value of a past measurement.
arXiv Detail & Related papers (2021-03-30T13:31:36Z) - Device-independent quantification of measurement incompatibility [0.0]
Incompatible measurements are necessary to observe nonlocal correlations.
We provide the direct link between Bell nonlocality and the quantification of measurement incompatibility.
arXiv Detail & Related papers (2020-10-16T15:47:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.