On compatibility of binary qubit measurements
- URL: http://arxiv.org/abs/2407.07711v1
- Date: Wed, 10 Jul 2024 14:44:12 GMT
- Title: On compatibility of binary qubit measurements
- Authors: Dmitry Grinko, Roope Uola,
- Abstract summary: This work approaches the problem through functions defined on the Boolean hypercube and their Fourier transformations.
We show that this reformulation of the problem leads to a complete geometric characterisation of joint measurability of any finite set of unbiased binary qubit measurements.
We discuss our results in the realm of quantum steering, where they translate into a family of steering inequalities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deciding which sets of quantum measurements allow a simultaneous readout is a central problem in quantum measurement theory. The problem is relevant not only from the foundational perspective but also has direct applications in quantum correlation problems fueled by incompatible measurements. Although central, only a few analytical criteria exist for deciding the incompatibility of general sets of measurements. This work approaches the problem through functions defined on the Boolean hypercube and their Fourier transformations. We show that this reformulation of the problem leads to a complete geometric characterisation of joint measurability of any finite set of unbiased binary qubit measurements and gives a necessary condition for the biased case. We discuss our results in the realm of quantum steering, where they translate into a family of steering inequalities. When certain unbiasedness conditions are fulfilled, these criteria are tight, hence fully characterizing the steering problem when the trusted party holds a qubit, and the untrusted party performs any finite number of binary measurements. We further discuss how our results point towards a second-order cone programming approach to measurement incompatibility and compare this to the predominantly used semi-definite programming-based techniques. We use our approach to falsify an existing conjecture on measurement incompatibility of special sets of measurements.
Related papers
- Dimension matters: precision and incompatibility in multi-parameter
quantum estimation models [44.99833362998488]
We study the role of probe dimension in determining the bounds of precision in quantum estimation problems.
We also critically examine the performance of the so-called incompatibility (AI) in characterizing the difference between the Holevo-Cram'er-Rao bound and the Symmetric Logarithmic Derivative (SLD) one.
arXiv Detail & Related papers (2024-03-11T18:59:56Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Measurement incompatibility is strictly stronger than disturbance [44.99833362998488]
Heisenberg argued that measurements irreversibly alter the state of the system on which they are acting, causing an irreducible disturbance on subsequent measurements.
This article shows that measurement incompatibility is indeed a sufficient condition for irreversibility of measurement disturbance.
However, we exhibit a toy theory, termed the minimal classical theory (MCT), that is a counterexample for the converse implication.
arXiv Detail & Related papers (2023-05-26T13:47:00Z) - Distributed quantum incompatibility [0.0]
We show that the incompatibility which is gained via additional measurements is upper and lower bounded by certain functions of the incompatibility of subsets of the available measurements.
We discuss the consequences of our results for the nonlocality that can be gained by enlarging the number of measurements in a Bell experiment.
arXiv Detail & Related papers (2023-01-20T16:47:18Z) - Naimark dilations of qubit POVMs and joint measurements [0.0]
Measurement incompatibility is one of the cornerstones of quantum theory.
numerical methods can decide any finite-dimensional and discrete joint measurability problem.
Here, we take a complementary approach by asking which measurements are compatible with a given measurement.
arXiv Detail & Related papers (2022-08-29T13:29:04Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Experimentally determining the incompatibility of two qubit measurements [55.41644538483948]
We describe and realize an experimental procedure for assessing the incompatibility of two qubit measurements.
We demonstrate this fact in an optical setup, where the qubit states are encoded into the photons' polarization degrees of freedom.
arXiv Detail & Related papers (2021-12-15T19:01:44Z) - Quantifying incompatibility of quantum measurements through
non-commutativity [0.0]
Incompatible measurements are an important distinction between quantum mechanics and classical theories.
We explore a family of incompatibility measures based on non-commutativity.
We show that they satisfy some natural information-processing requirements.
We also consider the behavior of our measures under different types of compositions.
arXiv Detail & Related papers (2021-10-20T16:37:10Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Verification of joint measurability using phase-space quasiprobability
distributions [0.0]
We introduce an approach to verify the joint measurability of measurements based on phase-space quasiprobability distributions.
Our results establish a connection between two notions of non-classicality, namely the negativity of quasiprobability distributions and measurement incompatibility.
arXiv Detail & Related papers (2020-12-12T16:21:36Z) - Incompatibility probability of random quantum measurements [3.7298088649201353]
Incompatibility of quantum measurements is of fundamental importance in quantum mechanics.
We study the necessary and sufficient conditions of quantum compatibility for a given collection of $n$ measurements in $d$-dimensional space.
arXiv Detail & Related papers (2019-12-27T19:44:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.