論文の概要: Towards Understanding How Self-training Tolerates Data Backdoor
Poisoning
- arxiv url: http://arxiv.org/abs/2301.08751v1
- Date: Fri, 20 Jan 2023 16:36:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 16:43:35.196104
- Title: Towards Understanding How Self-training Tolerates Data Backdoor
Poisoning
- Title(参考訳): セルフトレーニングがデータバックドア中毒をどう許容するか
- Authors: Soumyadeep Pal, Ren Wang, Yuguang Yao and Sijia Liu
- Abstract要約: バックドア攻撃を緩和するためのラベルのない追加データによる自己学習の可能性を探る。
新たな自己訓練体制は、バックドア攻撃に対する防衛に大いに役立ちます。
- 参考スコア(独自算出の注目度): 11.817302291033725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies on backdoor attacks in model training have shown that
polluting a small portion of training data is sufficient to produce incorrect
manipulated predictions on poisoned test-time data while maintaining high clean
accuracy in downstream tasks. The stealthiness of backdoor attacks has imposed
tremendous defense challenges in today's machine learning paradigm. In this
paper, we explore the potential of self-training via additional unlabeled data
for mitigating backdoor attacks. We begin by making a pilot study to show that
vanilla self-training is not effective in backdoor mitigation. Spurred by that,
we propose to defend the backdoor attacks by leveraging strong but proper data
augmentations in the self-training pseudo-labeling stage. We find that the new
self-training regime help in defending against backdoor attacks to a great
extent. Its effectiveness is demonstrated through experiments for different
backdoor triggers on CIFAR-10 and a combination of CIFAR-10 with an additional
unlabeled 500K TinyImages dataset. Finally, we explore the direction of
combining self-supervised representation learning with self-training for
further improvement in backdoor defense.
- Abstract(参考訳): モデルトレーニングにおけるバックドアアタックの最近の研究は、少量のトレーニングデータの汚染が、下流のタスクにおいて高いクリーンな精度を維持しながら、有毒なテスト時間データに対する誤った操作予測を生成するのに十分であることを示した。
バックドア攻撃のステルス性は、今日の機械学習パラダイムに多大な防御的課題を課している。
本稿では,バックドア攻撃の軽減を目的としたラベルなしデータによる自己学習の可能性を検討する。
まず,バニラの自己学習がバックドア緩和に有効ではないことを示すためのパイロット研究を行う。
そこで我々は,自己学習型擬似ラベルの段階において,強大だが適切なデータ強化を活用してバックドア攻撃を防御することを提案する。
新たな自己訓練体制は、バックドア攻撃に対する防御に大いに役立つことが分かっています。
この効果は、CIFAR-10の異なるバックドアトリガーの実験と、CIFAR-10と追加の500K TinyImagesデータセットの組み合わせによって実証されている。
最後に,自己教師付き表現学習と自己訓練を組み合わせることによって,バックドア防御のさらなる改善を図る。
関連論文リスト
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor [63.84477483795964]
データ中毒のバックドア攻撃は、機械学習モデルにとって深刻なセキュリティ上の脅威である。
本稿では,トレーニング中のバックドアディフェンスに着目し,データセットが有害になりうる場合でもクリーンなモデルをトレーニングすることを目的とした。
PDB(Proactive Defensive Backdoor)と呼ばれる新しい防衛手法を提案する。
論文 参考訳(メタデータ) (2024-05-25T07:52:26Z) - Exploiting Machine Unlearning for Backdoor Attacks in Deep Learning
System [4.9233610638625604]
マシンアンラーニングに基づく新しいブラックボックスバックドア攻撃を提案する。
攻撃者はまず、毒や緩和データを含む慎重に設計されたサンプルでトレーニングセットを強化し、良心のモデルを訓練する。
そして、攻撃者は、モデルの関連するデータの影響を取り除くために、未学習のサンプルに対するリクエストをポストし、徐々に隠れたバックドアを活性化する。
論文 参考訳(メタデータ) (2023-09-12T02:42:39Z) - Rethinking Backdoor Attacks [122.1008188058615]
バックドア攻撃では、悪意ある構築されたバックドアの例をトレーニングセットに挿入し、結果のモデルを操作に脆弱にする。
このような攻撃に対する防御は、典型的には、これらの挿入された例をトレーニングセットの外れ値として見ることと、堅牢な統計からのテクニックを使用してそれらを検出し、削除することである。
トレーニングデータ分布に関する構造情報がなければ,バックドア攻撃は自然に発生するデータの特徴と区別できないことを示す。
論文 参考訳(メタデータ) (2023-07-19T17:44:54Z) - Narcissus: A Practical Clean-Label Backdoor Attack with Limited
Information [22.98039177091884]
クリーンラベル」バックドア攻撃には、トレーニングセット全体の知識が必要である。
本稿では,対象クラスの代表例の知識のみに基づいて,クリーンラベルバックドア攻撃をマウントするアルゴリズムを提案する。
私たちの攻撃は、物理的な世界にトリガーが存在する場合でも、データセットやモデル間でうまく機能します。
論文 参考訳(メタデータ) (2022-04-11T16:58:04Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
バックドアモデルは、事前に定義されたトリガーパターンが存在する場合、常にターゲットクラスを予測する。
一般的には、敵の訓練はバックドア攻撃に対する防御であると信じられている。
本稿では,様々なバックドア攻撃に対して良好な堅牢性を提供するハイブリッド戦略を提案する。
論文 参考訳(メタデータ) (2022-02-22T02:24:46Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z) - Backdoor Learning: A Survey [75.59571756777342]
バックドア攻撃はディープニューラルネットワーク(DNN)に隠れたバックドアを埋め込む
バックドア学習は、急速に成長する研究分野である。
本稿では,この領域を包括的に調査する。
論文 参考訳(メタデータ) (2020-07-17T04:09:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。