Characterization and Learning of Causal Graphs with Small Conditioning
Sets
- URL: http://arxiv.org/abs/2301.09028v2
- Date: Sat, 28 Oct 2023 17:20:57 GMT
- Title: Characterization and Learning of Causal Graphs with Small Conditioning
Sets
- Authors: Murat Kocaoglu
- Abstract summary: Constraint-based causal discovery algorithms learn part of the causal graph structure by systematically testing conditional independences.
We propose a novel representation that allows us to graphically characterize $k$-Markov equivalence between two causal graphs.
We conduct synthetic, and semi-synthetic experiments to demonstrate that the $k$-PC algorithm enables more robust causal discovery in the small sample regime.
- Score: 6.52423450125622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constraint-based causal discovery algorithms learn part of the causal graph
structure by systematically testing conditional independences observed in the
data. These algorithms, such as the PC algorithm and its variants, rely on
graphical characterizations of the so-called equivalence class of causal graphs
proposed by Pearl. However, constraint-based causal discovery algorithms
struggle when data is limited since conditional independence tests quickly lose
their statistical power, especially when the conditioning set is large. To
address this, we propose using conditional independence tests where the size of
the conditioning set is upper bounded by some integer $k$ for robust causal
discovery. The existing graphical characterizations of the equivalence classes
of causal graphs are not applicable when we cannot leverage all the conditional
independence statements. We first define the notion of $k$-Markov equivalence:
Two causal graphs are $k$-Markov equivalent if they entail the same conditional
independence constraints where the conditioning set size is upper bounded by
$k$. We propose a novel representation that allows us to graphically
characterize $k$-Markov equivalence between two causal graphs. We propose a
sound constraint-based algorithm called the $k$-PC algorithm for learning this
equivalence class. Finally, we conduct synthetic, and semi-synthetic
experiments to demonstrate that the $k$-PC algorithm enables more robust causal
discovery in the small sample regime compared to the baseline algorithms.
Related papers
- A Differentially Private Clustering Algorithm for Well-Clustered Graphs [6.523602840064548]
We provide an efficient ($epsilon,$delta$)-DP algorithm tailored specifically for such graphs.
Our algorithm works for well-clustered graphs with $k$ nearly-balanced clusters.
arXiv Detail & Related papers (2024-03-21T11:57:16Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - Deep Probabilistic Graph Matching [72.6690550634166]
We propose a deep learning-based graph matching framework that works for the original QAP without compromising on the matching constraints.
The proposed method is evaluated on three popularly tested benchmarks (Pascal VOC, Willow Object and SPair-71k) and it outperforms all previous state-of-the-arts on all benchmarks.
arXiv Detail & Related papers (2022-01-05T13:37:27Z) - Improving Efficiency and Accuracy of Causal Discovery Using a
Hierarchical Wrapper [7.570246812206772]
Causal discovery from observational data is an important tool in many branches of science.
In the large sample limit, sound and complete causal discovery algorithms have been previously introduced.
However, only finite training data is available, which limits the power of statistical tests used by these algorithms.
arXiv Detail & Related papers (2021-07-11T09:24:49Z) - Solving correlation clustering with QAOA and a Rydberg qudit system: a
full-stack approach [94.37521840642141]
We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits.
Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering.
We show the qudit implementation is superior to the qubit encoding as quantified by the gate count.
arXiv Detail & Related papers (2021-06-22T11:07:38Z) - Improved Algorithms for Agnostic Pool-based Active Classification [20.12178157010804]
We consider active learning for binary classification in the agnostic pool-based setting.
Our algorithm is superior to state of the art active learning algorithms on image classification datasets.
arXiv Detail & Related papers (2021-05-13T18:24:30Z) - A Single Iterative Step for Anytime Causal Discovery [7.570246812206772]
We present a sound and complete algorithm for recovering causal graphs from observed, non-interventional data.
We rely on the causal Markov and faithfulness assumptions and recover the equivalence class of the underlying causal graph.
We demonstrate that our algorithm requires significantly fewer CI tests and smaller condition sets compared to the FCI algorithm.
arXiv Detail & Related papers (2020-12-14T13:46:01Z) - Causal Bandits without prior knowledge using separating sets [3.1000291317725]
The Causal Bandit is a variant of the classic Bandit problem where an agent must identify the best action in a sequential decision-making process.
Methods proposed for this problem thus far in the literature rely on exact prior knowledge of the full causal graph.
We formulate new causal bandit algorithms that no longer necessarily rely on prior causal knowledge.
arXiv Detail & Related papers (2020-09-16T20:08:03Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
We present a general framework for mining constraints from data.
In particular, we consider the inference in structured output prediction as an integer linear programming (ILP) problem.
We show that our approach can learn to solve 9x9 Sudoku puzzles and minimal spanning tree problems from examples without providing the underlying rules.
arXiv Detail & Related papers (2020-06-18T20:09:53Z) - From Checking to Inference: Actual Causality Computations as
Optimization Problems [79.87179017975235]
We present a novel approach to formulate different notions of causal reasoning, over binary acyclic models, as optimization problems.
We show that both notions are efficiently automated. Using models with more than $8000$ variables, checking is computed in a matter of seconds, with MaxSAT outperforming ILP in many cases.
arXiv Detail & Related papers (2020-06-05T10:56:52Z) - Ranking a set of objects: a graph based least-square approach [70.7866286425868]
We consider the problem of ranking $N$ objects starting from a set of noisy pairwise comparisons provided by a crowd of equal workers.
We propose a class of non-adaptive ranking algorithms that rely on a least-squares intrinsic optimization criterion for the estimation of qualities.
arXiv Detail & Related papers (2020-02-26T16:19:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.