Prompt Federated Learning for Weather Forecasting: Toward Foundation
Models on Meteorological Data
- URL: http://arxiv.org/abs/2301.09152v2
- Date: Sat, 27 May 2023 09:11:48 GMT
- Title: Prompt Federated Learning for Weather Forecasting: Toward Foundation
Models on Meteorological Data
- Authors: Shengchao Chen, Guodong Long, Tao Shen, Jing Jiang
- Abstract summary: To tackle the global climate challenge, it urgently needs to develop a collaborative platform for comprehensive weather forecasting on large-scale meteorological data.
This paper develops a foundation model across regions of understanding complex meteorological data and providing weather forecasting.
A novel prompt learning mechanism has been adopted to satisfy low-resourced sensors' communication and computational constraints.
- Score: 37.549578998407675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To tackle the global climate challenge, it urgently needs to develop a
collaborative platform for comprehensive weather forecasting on large-scale
meteorological data. Despite urgency, heterogeneous meteorological sensors
across countries and regions, inevitably causing multivariate heterogeneity and
data exposure, become the main barrier. This paper develops a foundation model
across regions capable of understanding complex meteorological data and
providing weather forecasting. To relieve the data exposure concern across
regions, a novel federated learning approach has been proposed to
collaboratively learn a brand-new spatio-temporal Transformer-based foundation
model across participants with heterogeneous meteorological data. Moreover, a
novel prompt learning mechanism has been adopted to satisfy low-resourced
sensors' communication and computational constraints. The effectiveness of the
proposed method has been demonstrated on classical weather forecasting tasks
using three meteorological datasets with multivariate time series.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Advancing Data-driven Weather Forecasting: Time-Sliding Data
Augmentation of ERA5 [3.3748750222488657]
We introduce a novel strategy that deviates from the common dependence on high-resolution data.
This paper improves on conventional approaches by adding more variables and a novel approach to data augmentation and processing.
Our findings reveal that despite the lower resolution, the proposed approach demonstrates considerable accuracy in predicting atmospheric conditions.
arXiv Detail & Related papers (2024-02-13T03:01:22Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - A Distributed Approach to Meteorological Predictions: Addressing Data
Imbalance in Precipitation Prediction Models through Federated Learning and
GANs [0.0]
classification of weather data involves categorizing meteorological phenomena into classes, thereby facilitating nuanced analyses and precise predictions.
It's imperative that classification algorithms proficiently navigate challenges such as data imbalances.
Data augmentation techniques can improve the model's accuracy in classifying rare but critical weather events.
arXiv Detail & Related papers (2023-10-19T21:28:20Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Deep generative model super-resolves spatially correlated multiregional
climate data [5.678539713361703]
We show an adversarial network-based machine learning enables us to correctly reconstruct the inter-regional spatial correlations in downscaling.
The proposed method has a potential application to the inter-regionally consistent assessment of the climate change impact.
We present the outcomes of another variant of the deep generative model-based downscaling approach in which the low-resolution precipitation field is substituted with the pressure field.
arXiv Detail & Related papers (2022-09-26T05:45:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.