Advancing Data-driven Weather Forecasting: Time-Sliding Data
Augmentation of ERA5
- URL: http://arxiv.org/abs/2402.08185v1
- Date: Tue, 13 Feb 2024 03:01:22 GMT
- Title: Advancing Data-driven Weather Forecasting: Time-Sliding Data
Augmentation of ERA5
- Authors: Minjong Cheon, Daehyun Kang, Yo-Hwan Choi, and Seon-Yu Kang
- Abstract summary: We introduce a novel strategy that deviates from the common dependence on high-resolution data.
This paper improves on conventional approaches by adding more variables and a novel approach to data augmentation and processing.
Our findings reveal that despite the lower resolution, the proposed approach demonstrates considerable accuracy in predicting atmospheric conditions.
- Score: 3.3748750222488657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern deep learning techniques, which mimic traditional numerical weather
prediction (NWP) models and are derived from global atmospheric reanalysis
data, have caused a significant revolution within a few years. In this new
paradigm, our research introduces a novel strategy that deviates from the
common dependence on high-resolution data, which is often constrained by
computational resources, and instead utilizes low-resolution data (2.5 degrees)
for global weather prediction and climate data analysis. Our main focus is
evaluating data-driven weather prediction (DDWP) frameworks, specifically
addressing sample size adequacy, structural improvements to the model, and the
ability of climate data to represent current climatic trends. By using the
Adaptive Fourier Neural Operator (AFNO) model via FourCastNet and a proposed
time-sliding method to inflate the dataset of the ECMWF Reanalysis v5 (ERA5),
this paper improves on conventional approaches by adding more variables and a
novel approach to data augmentation and processing. Our findings reveal that
despite the lower resolution, the proposed approach demonstrates considerable
accuracy in predicting atmospheric conditions, effectively rivaling
higher-resolution models. Furthermore, the study confirms the model's
proficiency in reflecting current climate trends and its potential in
predicting future climatic events, underscoring its utility in climate change
strategies. This research marks a pivotal step in the realm of meteorological
forecasting, showcasing the feasibility of lower-resolution data in producing
reliable predictions and opening avenues for more accessible and inclusive
climate modeling. The insights gleaned from this study not only contribute to
the advancement of climate science but also lay the groundwork for future
innovations in the field.
Related papers
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
This study explores a hybrid CNN-LSTM model to enhance temperature forecasting accuracy for the Delhi region.
We employed both direct and indirect methods, including comprehensive data preprocessing and exploratory analysis, to construct and train our model.
Experimental results indicate that the CNN-LSTM model significantly outperforms traditional forecasting methods in terms of both accuracy and stability.
arXiv Detail & Related papers (2024-09-14T11:06:07Z) - WeatherReal: A Benchmark Based on In-Situ Observations for Evaluating Weather Models [11.016845506758841]
We introduce WeatherReal, a novel benchmark dataset for weather forecasting derived from global near-surface in-situ observations.
This paper details the sources and processing methodologies underlying the dataset, and illustrates the advantage of in-situ observations in capturing hyper-local and extreme weather.
Our work aims to advance the AI-based weather forecasting research towards a more application-focused and operation-ready approach.
arXiv Detail & Related papers (2024-09-14T08:53:46Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - How far are today's time-series models from real-world weather forecasting applications? [22.68937280154092]
WEATHER-5K is a comprehensive collection of observational weather data that better reflects real-world scenarios.
It enables a better training of models and a more accurate assessment of the real-world forecasting capabilities of TSF models.
We provide researchers with a clear assessment of the gap between academic TSF models and real-world weather forecasting applications.
arXiv Detail & Related papers (2024-06-20T15:18:52Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.