Improving Autonomous Vehicle Mapping and Navigation in Work Zones Using
Crowdsourcing Vehicle Trajectories
- URL: http://arxiv.org/abs/2301.09194v1
- Date: Sun, 22 Jan 2023 20:16:12 GMT
- Title: Improving Autonomous Vehicle Mapping and Navigation in Work Zones Using
Crowdsourcing Vehicle Trajectories
- Authors: Hanlin Chen, Renyuan Luo, Yiheng Feng
- Abstract summary: This paper presents a prototype that introduces crowdsourcing trajectories information into the mapping process to enhance CAV's understanding on the drivable area and traffic rules.
The proposed method is compared with SLAM without any human driving information.
Our method has adapted well with the downstream path planning and vehicle control module, and the CAV did not violate driving rule, which a pure SLAM method did not achieve.
- Score: 7.5390770178143045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prevalent solutions for Connected and Autonomous vehicle (CAV) mapping
include high definition map (HD map) or real-time Simultaneous Localization and
Mapping (SLAM). Both methods only rely on vehicle itself (onboard sensors or
embedded maps) and can not adapt well to temporarily changed drivable areas
such as work zones. Navigating CAVs in such areas heavily relies on how the
vehicle defines drivable areas based on perception information. Difficulties in
improving perception accuracy and ensuring the correct interpretation of
perception results are challenging to the vehicle in these situations. This
paper presents a prototype that introduces crowdsourcing trajectories
information into the mapping process to enhance CAV's understanding on the
drivable area and traffic rules. A Gaussian Mixture Model (GMM) is applied to
construct the temporarily changed drivable area and occupancy grid map (OGM)
based on crowdsourcing trajectories. The proposed method is compared with SLAM
without any human driving information. Our method has adapted well with the
downstream path planning and vehicle control module, and the CAV did not
violate driving rule, which a pure SLAM method did not achieve.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Semantic Map Learning of Traffic Light to Lane Assignment based on
Motion Data [12.853720506838043]
Autonomous vehicles commonly rely on High Definition (HD) maps that contain information about the assignment of traffic lights to lanes.
To remedy these issues, our novel approach derives the assignments from traffic light states and the corresponding motion patterns of vehicle traffic.
Our publicly available API for the Lyft Level 5 dataset enables researchers to develop and evaluate their own approaches.
arXiv Detail & Related papers (2023-09-26T09:42:21Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Leveraging Road Area Semantic Segmentation with Auxiliary Steering Task [0.0]
We propose a CNN-based method that can leverage the steering wheel angle information to improve the road area semantic segmentation.
We demonstrate the effectiveness of the proposed approach on two challenging data sets for autonomous driving.
arXiv Detail & Related papers (2022-12-19T13:25:09Z) - Monocular BEV Perception of Road Scenes via Front-to-Top View Projection [57.19891435386843]
We present a novel framework that reconstructs a local map formed by road layout and vehicle occupancy in the bird's-eye view.
Our model runs at 25 FPS on a single GPU, which is efficient and applicable for real-time panorama HD map reconstruction.
arXiv Detail & Related papers (2022-11-15T13:52:41Z) - Trajectory Prediction for Autonomous Driving with Topometric Map [10.831436392239585]
State-of-the-art autonomous driving systems rely on high definition (HD) maps for localization and navigation.
We propose an end-to-end transformer networks based approach for map-less autonomous driving.
arXiv Detail & Related papers (2021-05-09T08:16:16Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - LiveMap: Real-Time Dynamic Map in Automotive Edge Computing [14.195521569220448]
LiveMap is a real-time dynamic map that detects, matches, and tracks objects on the road with crowdsourcing data from connected vehicles in sub-second.
We develop the control plane of LiveMap that allows adaptive offloading of vehicle computations.
We implement LiveMap on a small-scale testbed and develop a large-scale network simulator.
arXiv Detail & Related papers (2020-12-16T15:00:49Z) - BoMuDANet: Unsupervised Adaptation for Visual Scene Understanding in
Unstructured Driving Environments [54.22535063244038]
We present an unsupervised adaptation approach for visual scene understanding in unstructured traffic environments.
Our method is designed for unstructured real-world scenarios with dense and heterogeneous traffic consisting of cars, trucks, two-and three-wheelers, and pedestrians.
arXiv Detail & Related papers (2020-09-22T08:25:44Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
In recent years, the classical occupancy grid map approach has been extended to dynamic occupancy grid maps.
This paper presents the further development of a previous approach.
The data of multiple radar sensors are fused, and a grid-based object tracking and mapping method is applied.
arXiv Detail & Related papers (2020-08-09T09:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.