Inferring Driving Maps by Deep Learning-based Trail Map Extraction
- URL: http://arxiv.org/abs/2505.10258v1
- Date: Thu, 15 May 2025 13:09:19 GMT
- Title: Inferring Driving Maps by Deep Learning-based Trail Map Extraction
- Authors: Michael Hubbertz, Pascal Colling, Qi Han, Tobias Meisen,
- Abstract summary: High-definition (HD) maps offer extensive and accurate environmental information about the driving scene.<n>Recent trends have moved from offline mapping to online mapping, ensuring availability and actuality of the utilized maps.<n>We propose a novel offline mapping approach that integrates trails - informal routes used by drivers - into the map creation process.
- Score: 5.381140012327021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-definition (HD) maps offer extensive and accurate environmental information about the driving scene, making them a crucial and essential element for planning within autonomous driving systems. To avoid extensive efforts from manual labeling, methods for automating the map creation have emerged. Recent trends have moved from offline mapping to online mapping, ensuring availability and actuality of the utilized maps. While the performance has increased in recent years, online mapping still faces challenges regarding temporal consistency, sensor occlusion, runtime, and generalization. We propose a novel offline mapping approach that integrates trails - informal routes used by drivers - into the map creation process. Our method aggregates trail data from the ego vehicle and other traffic participants to construct a comprehensive global map using transformer-based deep learning models. Unlike traditional offline mapping, our approach enables continuous updates while remaining sensor-agnostic, facilitating efficient data transfer. Our method demonstrates superior performance compared to state-of-the-art online mapping approaches, achieving improved generalization to previously unseen environments and sensor configurations. We validate our approach on two benchmark datasets, highlighting its robustness and applicability in autonomous driving systems.
Related papers
- Driving by Hybrid Navigation: An Online HD-SD Map Association Framework and Benchmark for Autonomous Vehicles [6.52409981498299]
We introduce textbfOnline textbfMap textbfAssociation, the first benchmark for the association of hybrid navigation-oriented online maps.<n>Based on existing datasets, the OMA contains 480k of roads and 260k of lane paths.
arXiv Detail & Related papers (2025-07-10T07:16:00Z) - Coherent Online Road Topology Estimation and Reasoning with Standard-Definition Maps [26.036008442130587]
Most autonomous cars rely on the availability of high-definition (HD) maps.<n>Current research aims to address this constraint by directly predicting HD map elements from onboard sensors.<n>We propose a coherent approach to predict lane segments and their corresponding topology, as well as road boundaries.
arXiv Detail & Related papers (2025-07-02T06:26:17Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Leveraging GNSS and Onboard Visual Data from Consumer Vehicles for Robust Road Network Estimation [18.236615392921273]
This paper addresses the challenge of road graph construction for autonomous vehicles.
We propose using global navigation satellite system (GNSS) traces and basic image data acquired from these standard sensors in consumer vehicles.
We exploit the spatial information in the data by framing the problem as a road centerline semantic segmentation task using a convolutional neural network.
arXiv Detail & Related papers (2024-08-03T02:57:37Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
Vision-based end-to-end driving models trained by imitation learning can lead to affordable solutions for autonomous driving.
We study how to guide the attention of these models to improve their driving quality by adding a loss term during training.
In contrast to previous work, our method does not require these salient semantic maps to be available during testing time.
arXiv Detail & Related papers (2024-04-30T23:18:51Z) - Prior Based Online Lane Graph Extraction from Single Onboard Camera
Image [133.68032636906133]
We tackle online estimation of the lane graph from a single onboard camera image.
The prior is extracted from the dataset through a transformer based Wasserstein Autoencoder.
The autoencoder is then used to enhance the initial lane graph estimates.
arXiv Detail & Related papers (2023-07-25T08:58:26Z) - Online Map Vectorization for Autonomous Driving: A Rasterization
Perspective [58.71769343511168]
We introduce a newization-based evaluation metric, which has superior sensitivity and is better suited to real-world autonomous driving scenarios.
We also propose MapVR (Map Vectorization via Rasterization), a novel framework that applies differentiableization to preciseized outputs and then performs geometry-aware supervision on HD maps.
arXiv Detail & Related papers (2023-06-18T08:51:14Z) - Neural Map Prior for Autonomous Driving [17.198729798817094]
High-definition (HD) semantic maps are crucial in enabling autonomous vehicles to navigate urban environments.
Traditional method of creating offline HD maps involves labor-intensive manual annotation processes.
Recent studies have proposed an alternative approach that generates local maps using online sensor observations.
In this study, we propose Neural Map Prior (NMP), a neural representation of global maps.
arXiv Detail & Related papers (2023-04-17T17:58:40Z) - Trajectory Prediction for Autonomous Driving with Topometric Map [10.831436392239585]
State-of-the-art autonomous driving systems rely on high definition (HD) maps for localization and navigation.
We propose an end-to-end transformer networks based approach for map-less autonomous driving.
arXiv Detail & Related papers (2021-05-09T08:16:16Z) - MP3: A Unified Model to Map, Perceive, Predict and Plan [84.07678019017644]
MP3 is an end-to-end approach to mapless driving where the input is raw sensor data and a high-level command.
We show that our approach is significantly safer, more comfortable, and can follow commands better than the baselines in challenging long-term closed-loop simulations.
arXiv Detail & Related papers (2021-01-18T00:09:30Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
In recent years, the classical occupancy grid map approach has been extended to dynamic occupancy grid maps.
This paper presents the further development of a previous approach.
The data of multiple radar sensors are fused, and a grid-based object tracking and mapping method is applied.
arXiv Detail & Related papers (2020-08-09T09:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.